
GoHotDraw: Evaluating the Go Programming
Language with Design Patterns

Frank Schmager
Victoria University of Wellington,

New Zealand
frank.schmager@ecs.vuw.ac.nz

Nicholas Cameron
Victoria University of Wellington,

New Zealand
ncameron@ecs.vuw.ac.nz

James Noble
Victoria University of Wellington,

New Zealand
kjx@ecs.vuw.ac.nz

Abstract
Go, a new programming language backed by Google, has the po-
tential for widespread use: it deserves an evaluation. Design pat-
terns are records of idiomatic programming practice and inform
programmers about good program design. In this study, we evalu-
ate Go by implementing design patterns, and porting the “pattern-
dense” drawing framework HotDraw into Go, producing GoHot-
Draw. We show how Go’s language features affect the implemen-
tation of Design Patterns, identify some potential Go programming
patterns, and demonstrate how studying design patterns can con-
tribute to the evaluation of a programming language.

Categories and Subject Descriptors D.3.0 [Programming Lan-
guages]: General

General Terms Design, Languages

Keywords Go, Design Patterns

1. Introduction
Go is a new object-oriented programming language, developed at
Google by Rob Pike and others. Go is used “internally at Google
for some production stuff” [18] and has found an active community
since its publication in November 2009 [1]. This paper describes
our experiences implementing the patterns from Design Patterns
[9], and the HotDraw drawing editor framework in Go. We discuss
the differences between our implementations of design patterns
in Go and in other programming languages (primarily Java) and
suggest programming idioms in Go that may develop into design
patterns.

Many researchers have proposed methods and criteria for eval-
uating programming languages [26, 22]. Direct comparisons of
programming languages have been conducted: a comparison of
Java with C] [5]; a comparison of FORTRAN-77, C, Pascal and
Modula-2 [13]. Others investigated suitability as a first program-
ming language: Parker et al. compiled a list of criteria for introduc-
tory programming courses at universities [20]; McIver proposed
evaluating languages together with IDEs [16]; Hadjerrouit exam-
ined Java’s suitability as a first programming language [11]; Clarke
used questionnaires to evaluate a programming language [6]; Gupta

Copyright is held by the author/owner(s). This paper was published in the proceed-
ings of the Workshop on Evaluation and Usability of Programming Languages and
Tools (PLATEAU) at the ACM Onward! and SPLASH Conferences. October, 2010.
Reno/Tahoe, Nevada, USA.

discussed requirements for programming languages for beginners
[10]. The methods and criteria proposed in the literature are usu-
ally hard to measure and are prone to be subjective.

In this paper, we use design patterns to evaluate a programming
language. There are a number of books describing the GoF design
patterns in different programming languages (Smalltalk [4], Java
[17], JavaScript [12], Ruby [19]). Implementations of design pat-
terns differ due to specifics of the language used. There is a need
for programming language specific pattern descriptions. Our use
of patterns should give programmers insight into how Go-specific
language features are used in everyday programming, and how gaps
compared with other languages can be bridged.

We have implemented all 23 patterns from Design Patterns in
Go: for space reasons we discuss only the Singleton, Adapter, and
Template Method patterns in this paper. The implementations of
these patterns illuminate specific Go language features: Singleton
demonstrates how Go’s source code is structured in packages rather
than classes, and Go’s visibility rules; Adapter allows us to com-
pare embedding with composition in Go; and Template Method il-
lustrates the flow of control between embedding and embedded ob-
jects. To investigate how design patterns integrate in Go, we ported
the core of the well-known drawing framework HotDraw into Go,
thus GoHotDraw.

This paper is organised as follows: in Sect. 2 we give a brief
overview of Go; in Sect. 3 we present case studies implementing
three design patterns and JHotDraw in Go; in Sect. 4 we discuss
our experience using Go, with a focus on design patterns; in Sect. 5
we discuss future work; in Sect. 6 we conclude.

2. Background
In this section we introduce the Go programming language.

2.1 The Go Programming Language
Go is an object-oriented programming language with a C-like syn-
tax. Go is designed as a systems language and has a focus on con-
currency; it is “expressive, concurrent, garbage-collected” [3]. It
supports a mixture of static and dynamic typing, and is designed to
be safe and efficient. A primary motivation seems to be compilation
speed (and indeed, Go programs compile blazingly fast).

Go has objects, and structs rather than classes. Go has no con-
cept of inheritance, reuse is supported by embedding. There are no
explicit subtype declarations, but in some cases, structural subtypes
are inferred. Pointers are explicit and indicated by an asterisk be-
fore the type. Unlike C, however, pointer arithmetic is not allowed.

Objects and methods The following code example defines the
type Car with a single field affordable with type bool:

type Car struct {
affordable bool

}

Following C++ rather than Java, methods in Go are defined
outside struct declarations. Multiple return values are allowed and
may be named; the receiver must be explicitly named. Go does not
support overloading or multi-methods.

The following listing defines the method Refuel for Car ob-
jects:

func (this *Car) Refuel(liter int) (price float) {...}

Embedding Reuse in Go is supported by embedding. If a method
or field cannot be found in an object’s type definition, then em-
bedded types are searched, and method calls are forwarded to the
embedded object. This is similar to subclassing, the difference in
semantics is that an embedded object is a distinct object, and fur-
ther dispatch operates on the embedded object, not the embedding
one. For example, the following code shows a Truck type which
embeds the Car type and, therefore, gains the method Refuel:

type Truck struct {
Car
affordable bool

}

Objects can be deeply embedded and multiply embedded. Name
conflicts are only a problem if the ambiguous element is accessed.

Interfaces Interfaces in Go are abstract representations of be-
haviour — sets of methods. The Go compiler infers if an object
satisfies an interface. This part of the type system is structural: if
an object implements the methods of an interface, then it has that
interface as a type. No annotation by the programmer is required.
Interfaces are allowed to embed other interfaces: the embedding
interface will contain all the methods of the embedded interfaces.
There is no explicit subtyping between interfaces, but since type
checking for interfaces is structural and implicit, if an object im-
plements an embedding interface, then it will always implement
any embedded interfaces. Every object implements the empty in-
terface interface; other, user-defined empty interfaces may also
be defined. The listing below defines Refuelable as an interface
with a single method Refuel().

type Refuelable interface {
Refuel(int) float

}

Both Car and Truck implement this interface, even though it
is not listed in their definitions (and indeed, Refuelable may
have been defined long afterwards). Type checking of non-interface
types is not structural: a Truck cannot be used where a Car is
expected.

Functions and goroutines Go supports functions (methods with
no receiver) as well as function pointers and closures. Goroutines
are functions that execute in parallel with other goroutines. Gorou-
tines are designed to be lightweight and to hide many of the com-
plexities of thread creation and management. The keyword ‘go’ in
front of a function call executes the function in its own goroutine.
Goroutines can communicate (asynchronously) with other gorou-
tines through channels.

Object initialisation Go objects can be created from struct defini-
tions with or without the new keyword. Fields can be initialised by
the user when the object is initialised, but there are no constructors.

Newly created objects in Go are always initialised with a default
value (nil, 0, false, "", etc.). There are multiple ways to create

objects. On each line in the following listing, an Example object
is created and a pointer to the new object stored in anExample. In
each case the fields have the following values:

Example.Name == "" and Example.aField == 0.

1 var anExample *Example
2 anExample = new(Example)
3 anExample = &Example {}
4 anExample = &Example {"",0}
5 anExample = &Example{Name:"", aField :0}

Packages Go source code is structured in packages. Go provides
two scopes of visibility: members beginning with a lower case
letter (e.g., affordable) are only accessible inside their package;
members beginning with an upper case letter (e.g., Car, Refuel())
are publicly visible.

3. Case Studies
We have implemented all 23 GoF design patterns in Go. In this
section, we describe our experience in implementing three of them:
Singleton, Adaptor, and Template Method.

3.1 Singleton
The Singleton design pattern [9] ensures that only a single instance
of a type exists in a program, and provides a global access point to
that object.

In Java, Singletons are implemented with static fields. In Go,
there are no static class members, so instead we use Go’s package
access mechanisms and functions to provide similar functionality.

For example, we may wish to have only a single registry object
in a program:

package reg

type Registry interface {
DoSomething ()

}

type registry struct {
...

}

var theRegistry Registry

func GetRegistry () Registry {
if theRegistry == nil {

theRegistry = ®istry {}
}
return theRegistry

}

func (this *registry) DoSomething () { ... }

The variable theRegistry is a reference to the only instantia-
tion of registry. The struct registry cannot be named outside
the reg package, so it can only be instantiated inside the package.
The public function GetRegistry provides access to the singleton
registry, creating a new object if none exists when it is called.
The object is provided via the interface Registry so that it can
be used and stored outside the package. Variables with interface
type are always passed by reference, so copies of theRegistry
will not be made when calling functions or methods. Registry is
a non-empty interface, so it is unlikely to be implemented by acci-
dent (see Sect. 4.1); other objects implementing Registry can be
created (as in other implementations of Singleton). Our implemen-
tation does not prevent multiple instantiations of registry being
created inside the reg package; in particular, this might be done
inadvertently by embedding registry.

3.2 Adapter
The Adapter design pattern adapts the interface of an object into
a different interface to make otherwise incompatible objects work
together.

In the following example, we will adapt a Reptile object to
the Animal interface; the Slither method of Reptile provides
the functionality found in Animal’s Move.
package animals

type Animal interface {
Move()

}

type Cat struct {}
func (this *Cat) Move() { ... }

package reptiles

type Reptile struct {}

func (this *Reptile) Slither () { ... }

The struct ReptileAdapter adapts an embedded reptile so that
it can be used as an Animal. ReptileAdapter objects implicitly
implement the Animal interface.
package client

type ReptileAdapter struct {
*reptiles.Reptile

}

func (this *ReptileAdapter) Move() { Slither () }

Alternatively, we could use composition rather than embedding
in our adapter object. This is a similar situation to class-based
languages where an adapter can use inheritance or composition. We
discuss composition vs. embedding as a design choice in Sect. 4.

3.3 Template Method
The Template Method design pattern can be used when the outline
of an algorithm should be invariant between classes, but individual
steps may vary.

We illustrate Template Method in Go with a framework for
turn-based games. At first glance, the Go implementation looks
much like the standard one: a set of methods is defined in the
Game interface, these methods are the fine grained parts of the
algorithm; a BasicGame struct defines the static glue code which
coordinates the algorithm (in the PlayGame method), and default
implementations for most methods in Game.
type Game interface {

SetPlayers(int)
InitGame ()
DoTurn(int)
EndOfGame () bool
PrintWinner ()

}

type BasicGame struct {}

func (this *BasicGame) PlayGame(game Game ,
players int) {

game.SetPlayers(players)
game.InitGame ()
for !game.EndOfGame () {

game.DoTurn ()
}
game.PrintWinner ()

}

func (this *BasicGame) SetPlayers(players int) {}
func (this *BasicGame) InitGame () {}
func (this *BasicGame) DoTurn () {}

func (this *BasicGame) PrintWinner () {
fmt.Println ("A Player won")

}

Below is a concrete game of chess. The Chess struct em-
beds BasicGame, some methods are overridden, some are not; the
EndOfGame method is also supplied; therefore, Chess implicitly
implements Game and games of chess can be played by calling
PlayGame on a Chess object.
type Chess struct {

*BasicGame
...

}

func (this *Chess) SetPlayers(players int) {}
func (this *Chess) DoTurn () { ... }
func (this *Chess) EndOfGame () bool { ... }

The major difference compared with standard implementations
is that we must pass a game object to the PlayGame method
twice: first as the receiver (this *BasicGame) and then as the
first argument (game Game). This is the client-specified self pat-
tern [25]. BasicGame will be embedded into concrete games (like
Chess). Inside PlayGame, calls made to this will call methods on
BasicGame; Go does not dispatch back to the embedding object.
If we wish the embedding object’s methods to be called, then we
must pass in the embedding object as an extra parameter. This ex-
tra parameter must be passed in by the client of PlayGame, and
must be the same object as the first receiver. We discuss this idiom
further in Sect. 4.1.

In class-based languages, the BasicGame class would usually
be declared abstract, because it does not make sense to instantiate
it. Go, however, has no equivalent of abstract classes. To prevent
BasicGame objects being used, we do not implement all methods
in the Game interface. This means that BasicGame objects cannot
be used as the client-specified self parameter to PlayGame (because
it does not implement Game). We cannot prevent BasicGame ever
being instantiated, but we can prevent it being used within this
code.

In Java, the PlayGame method would be declared final so that
the structure of the game cannot be changed. This is not possible in
Go because there is no way to stop a method being overridden.

3.4 GoHotDraw
HotDraw is a framework for drawing editors and graphical appli-
cations [14]. As a larger case study, we ported the core of HotDraw
to Go, thus GoHotDraw. We chose to port HotDraw because its de-
sign is well known, and because it makes extensive use of design
patterns [7, 23, 15]. We based our port on the the source code and
documentation of JHotDraw 5.3 and 7.2 [8].

Because JHotDraw is quite large, we concentrated on the
essence of the framework (Drawings contain Views, Views con-
tain Figures, Editors enable Tools to manipulate Drawings) and
implemented only a subset of HotDraw’s features — we support
only rectangle Figures, but those figures can be selected, and then
moved, and resized via handles. This subset is sufficient to cover all
the key patterns in HotDraw’s design. As a guide, JHotDraw v5.3
is about 15000 lines of code and v7.2 about 70000 lines, including
several complete applications. Our GoHotDraw subset is around
2000 lines.

GoHotDraw’s design is very similar to the Smalltalk and Java
versions of HotDraw. GoHotDraw uses many patterns, and gener-
ally they work as well in Go as in other languages. For example,
the Composite pattern supports composite Figures; the Observer
pattern notifies Views of changes in the Figures they display; the
Chain of Responsibility pattern manipulates Figures via Handles;
the Mediator pattern couples Views and Tools via DrawingEditors;
the Strategy pattern supports multiple repainting algorithms; the

Adapter pattern couples GoHotDraw to one of Go’s underlying
graphics libraries (XGB); the Null Object pattern [27] introduces
NullHandles and NullTools to avoid handling null objects.

As a result, GoHotDraw’s structs and embedding generally par-
allel JHotDraw’s classes and inheritance, and GoHotDraw’s inter-
faces are generally similar to those in the Java versions — perhaps
for this reason, they tend to declare more than just the one or two
methods usually preferred in Go [21].

The key difference between the Go and Java HotDraw designs
comes from the difference between Go’s embedding and Java’s
inheritance (described in Sect. 3.3): methods on “inner” embedded
structs in Go cannot call back to methods in “outer” embedding
objects. In contrast, Java super class methods most certainly can
call “down” to methods defined in their subclasses, and this is the
key to the template method pattern.

As a result, GoHotDraw’s Figure interface — the central in-
terface of HotDraw — is significantly different to the Java version.
While both interfaces provide the same methods, many (if not most)
of those methods have to have an additional Figure parameter, used
as a client-specified self to support template methods.

To take one simple example: a figure is empty if its size is
smaller than 3-by-3 pixels. This method is defined for DefaultFig-
ure, and calls the GetSize method defined in the Figure interface:
func (this *DefaultFigure) IsEmpty(fig Figure) bool {

dimension := fig.GetSize(fig)
return dimension.Width < 3 || dimension.Height < 3

}

The problem is that this method needs to call GetSize on the
correct “substructure” (aka subclass): in HotDraw, a RectangleFig-
ure inherits from DefaultFigure and thus inherits a suitable defini-
tion for GetSize (as well as other methods). In Java, DefaultFigure
could simply call this.GetSize() and the call will be dynami-
cally dispatched and run the correct method. In Go, this call will
try to invoke the (non-existent) GetSize method on DefaultFigure:
a client-specified self is needed for dynamic dispatch. We would be
interested to see if there were a more Go-flavoured way to imple-
ment this functionality.

This problem is exacerbated when a design needs multiple lev-
els of embedding or inheritance. Following JHotDraw, GoHot-
Draw’s DefaultFigure is embedded in CompositeFigure; Compos-
iteFigure is embedded in Drawing; Drawing is then further embed-
ded in StandardDrawing. These multiple embeddings mean many
Figure methods require a client-specified self parameter to work
correctly, as the final version of the Figure interface illustrates.
Of 21 methods in that interface, six require the additional client-
specified self argument (highlighted in bold):
type Figure interface {

MoveBy(figure Figure, dx int , dy int)
basicMoveBy(dx int , dy int)
changed(figure Figure)
GetDisplayBox () *Rectangle
GetSize(figure Figure) *Dimension
IsEmpty(figure Figure) bool
Includes(other Figure) bool
Draw(g Graphics)
GetHandles () *Set
GetFigures () *Set
SetDisplayBoxRect(figure Figure, rect *Rectangle)
SetDisplayBox(figure Figure, topLeft , bottomRight *Point)
setBasicDisplayBox(topLeft , bottomRight *Point)
GetListeners () *Set
AddFigureListener(l FigureListener)
RemoveFigureListener(l FigureListener)
Release ()
GetZValue () int
SetZValue(zValue int)
Clone() Figure
Contains(point *Point) bool

}

4. Discussion
In this section, we reflect on what we have learnt about design
patterns in Go: both how existing patterns are implemented in Go,
and what new, Go-specific patterns we may have uncovered.

Rob Pike has described design patterns as “add-on models” for
languages whose “standard model is oversold” [21]. We disagree:
patterns are a valuable tool for helping to design software that is
easy to maintain and extend. Go’s language features have not re-
placed design patterns: we found that only Adapter was signifi-
cantly simpler in Go than Java, and some patterns, such as Template
Method, seem to be more difficult. In general, we were surprised by
how similar the Go pattern implementations were to implementa-
tions in other languages such as C++ and Java.

As well as design patterns, the Gang of Four [9] suggest some
general design principles:

“Program to an interface, not an implementation” Go helps
programmers to follow this advice. Go’s syntax for interfaces is
concise and straightforward. Types implicitly implement inter-
faces; there is no additional syntactic overhead. On the other hand,
Go does not have abstract classes. Go can simulate abstract meth-
ods however, as discussed below.

“Favour object composition over class inheritance” Go has no
inheritance. Reuse can be achieved through either language-level
embedding or program-level composition. Go thus favours compo-
sition over inheritance. The GoF’s experience was that designers
overused inheritance. Since embedding is an automated form of
composition, it is not obvious whether the same will apply to em-
bedding vis-à-vis composition. Embedding has many of the draw-
backs of inheritance: it affects the public interface of objects, it
is not fine-grained (i.e, no method-level control over embedding),
methods of embedded objects cannot be hidden, and it is static.

4.1 Go idioms
We found that programming in Go required some idiomatic pro-
gramming practices. It is probably premature to call these design
patterns: there may be better, more Go-specific ways of addressing
the problems, or they may be found to be indicative of bad practice
rather than good.

Client-specified self Embedding does not support all the usual
object-oriented behaviour of dynamic dispatch on the self/this ob-
ject. In particular, Go will dispatch from outer objects to inner ob-
jects (up from subclasses to superclasses) but not in the other direc-
tion, from inner objects to outer objects (down from superclasses
to subclasses). Downwards dispatch is often useful in general, and
particularly so in the Template Method and Factory Method pat-
terns. Downwards dispatch can be emulated by passing the outer-
most “self” object as an extra parameter to all methods that need
it — implementing the client-specified self pattern [25]. To use dy-
namic dispatch, the method’s receiver must also still be supplied.

Using client-specified self is less satisfactory than proper inher-
itance: it requires collaboration of an object’s client to work; the
invariant that the self parameter is in fact the self is not enforced
by the compiler, and there is scope for error if an object other than
the correct one is passed in. The extra parameter complicates the
code making it harder to read and write, for no clear benefit over
inheritance.

Abstract classes Go has no equivalent of abstract classes (classes
which are partially implemented and cannot be instantiated). Ab-
stract classes are commonly used both in design patterns and
object-oriented programming in general. Interfaces can be used
to define methods without implementations, but these cannot easily
be combined with partial implementations. As illustrated by our
discussion of the Template Method pattern (Sect. 3.3), however,

Go’s implicit interface declarations provide a partial work around:
concrete methods are provided in a base-struct and an interface
is provided which is a superset of these methods. The difference
between the two are the abstract methods (C++’s pure virtual or
Smalltalk’s subclassResponsibility). The interface is then used as
the type of the client-specified self parameter. This idiom is defi-
cient because the base object can still be instantiated, and the idiom
relies on clients obeying the client-specified self protocol.

Multiple constructors Go does not support constructors. If ini-
tialisation code is required for an object, then the recommended
solution is to use a simple kind of factory method [2]. The Factory
Method pattern [9] (or at least a simplification of it) is thus regu-
larly used in Go programs. Go does not support overloading, and
so if multiple ‘constructors’ are required, then the factory meth-
ods must have different names. We found that this was common
and that having to use different names was inconvenient — there
is no naming convention for multiple different factory methods, so
clients wishing to instantiate an object must either guess or check
the documentation.

Comma OK Methods in Go can return multiple values. This
facility is often used to return an error signal: one return value is
the result and the other is used to signal an error. This “Comma
OK” idiom is encouraged by the Go authors [2] and used in the
libraries; unsurprisingly, it is hard to avoid. An advantage of this
idiom is that Go’s exception handling mechanism is rarely used and
programs are not littered with try...catch blocks, which harm
readability. On the other hand, error conditions are easier to ignore
because error checking is not enforced by the compiler.

Not-quite-a-marker interface Parameters in Go are often given
empty interface types which indicate the kind of object expected
by the method, rather than any expected functionality. This idiom is
common in other languages, including Java: e.g., Cloneable in the
standard library. In Go, however, all objects implicitly implement
empty interfaces, so using an empty interface does not help the
compiler check the programmers intent. An alternative solution is
to use interfaces with a single, or very small number of, methods.
This lessens the likelihood of objects implementing the interface
by accident — but does not remove it. We found this idiom used
in the standard library (“In Go, interfaces are usually small: one
or two or even zero methods.” [21]) and used it frequently in our
own code. Unlike much Go code, however, the key interfaces in
GoHotDraw have several tens of methods, closer to design practice
in other object-oriented languages.

4.2 Syntax
The Go syntax is an improvement over languages such as Java
or C++ (e.g., it supports built in slices and maps). However, it is
more verbose and less elegant than other modern languages such as
Haskell and Python. For example,

• Not requiring semicolons is nice, but requiring braces, is
clumsy e.g. compared to Haskell’s layout syntax (though this
is a somewhat personal preference). Forcing the programmer to
put braces only on particular lines seems indefensibly inconve-
nient.

• Interface types are implicitly references, but other types must
be explicitly marked as pointers; we found this inconsistency
tripped us up repeatedly. There is no convention for distinguish-
ing interface names from type names. It is therefore hard to
interpret interface declarations without knowing which other
types are interfaces (and therefore always passed by reference)
or structs (always passed by value, and thus should often be
pointer types).

• The initial-capital-for-public encapsulation scheme is nice to
write, but hard to read, and making mistakes is easy. Especially
because many other languages use the incompatible lower-case-
for-values, inital-capital-for-types convention.

• We found Go’s multifarious object creation syntax — some
with and some without the new keyword — hard to interpret.

• Defining methods outside classes, and having to specify the
receiver’s name and type explicitly is repetitive, and makes
methods hard to find, and hard to distinguish from functions
in the same package.

5. Future Work
We have attempted to evaluate Go using design patterns. Any such
evaluation is dependent on the design patterns used. The Gang
of Four patterns are general-purpose programming patterns, and
so our evaluation is of Go as a general-purpose language. Go
is specifically targeted at the systems and concurrent domains.
Our most immediate future work is thus to evaluate Go using
concurrency and networking patterns [24], and patterns for systems
programming.

Our evaluation has so far been qualitative. We would like to
extend our study into quantitative evaluation by applying metrics
to existing Go source code to understand how Go language features
are used ‘in the wild’. Such a study would currently be hampered
by the small volume of Go source code, but this situation is rapidly
improving.

6. Conclusion
In this paper we have introduced Go, and evaluated it using design
patterns. Our implementations of design patterns have highlighted
Go-specific features including embedding and interface inference.
Embedding allows for an easy implementation of the Adapter pat-
tern, but can make flow of control more complicated, as seen in our
implementation of Template Method.

Go is a language which aims to do things differently, adopting
a new object model that is significantly different from most object-
oriented languages. At least for classical object-oriented programs,
such as drawing editors and frameworks, designs in Go do not
seem to be significantly different to designs in Java or C++. In
some circumstances, the differences between embedding and in-
heritance can make some patterns more difficult to implement, but
Go-specific idioms (or patterns) can resolve most of these difficul-
ties.

Acknowledgments
This work was funded in part by a Build IT Postdoctoral Fellow-
ship.

References
[1] Golang.org Community, 2010. http://golang.org/doc/

community.html; Accessed March – November 2010.

[2] Effective Go, 2010. http://golang.org/doc/effective_go.
html; Accessed March–August 2010.

[3] Golang.org, 2010. http://golang.org; Accessed March–August
2010.

[4] Sherman R. Alpert, Kyle Brown, and Bobby Woolf. The Design Pat-
terns Smalltalk Companion. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 1998.

[5] Shyamal Suhana Chandra and Kailash Chandra. A Comparison of
Java and C]. J. Comput. Small Coll., 20(3):238–254, 2005.

[6] Steven Clarke. Evaluating a new programming language. In 13th
Workshop of the Psychology of Programming Interest Group, pages
275–289, 2001.

[7] Ward Cunningham. A CRC Description of HotDraw. http://c2.
com/doc/crc/draw.html, 1994. Retrieved 15/07/2010.

[8] Erich Gamma. JHotDraw. http://jhotdraw.sourceforge.
net/, 1996. Retrieved 15/07/2010.

[9] Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides.
Design Patterns. Elements of Reusable Object-Oriented Software.
Addison-Wesley, March 1995.

[10] Diwaker Gupta. What is a good first programming language? Cross-
roads, 10(4):7–7, 2004.

[11] Said Hadjerrouit. Java as first programming language: a critical
evaluation. SIGCSE Bull., 30(2):43–47, 1998.

[12] Ross Harmes and Dustin Diaz. Pro JavaScript Design Patterns.
Apress, 1 edition, December 2007.

[13] Neal M. Holtz and William J. Rasdorf. An evaluation of program-
ming languages and language features for engineering software de-
velopment. Engineering with Computers, 3(4):183–199, December
1988.

[14] Ralph E. Johnson. Documenting frameworks using patterns. In OOP-
SLA ’92: Conference Proceedings on Object-Oriented Programming
Systems, Languages, and Applications, pages 63–76, New York, NY,
USA, 1992. ACM.

[15] Wolfram Kaiser. Become a programming Picasso with JHotDraw.
JavaWorld, February 2001.

[16] Linda McIver. Evaluating languages and environments for novice
programmers. In 14th Workshop of the Psychology of Programming
Interest Group, pages 100–110. Brunel University, June 2002.

[17] Steven J. Metsker and William C. Wake. Design Patterns in Java.
Addison-Wesley, Upper Saddle River, NJ, 2. edition, 2006.

[18] Cade Metz. Google programming Frankenstein is a Go. The Register,
May 2010.

[19] Russ Olsen. Design Patterns in Ruby. Addison-Wesley Professional,
1 edition, December 2007.

[20] Kevin R. Parker, Thomas A. Ottaway, Joseph T. Chao, and Jane
Chang. A Formal Language Selection Process for Introductory Pro-
gramming Courses. Journal of Information Technology Education,
5:133–151, 2006.

[21] Rob Pike. Another go at language design. http://www.stanford.
edu/class/ee380/Abstracts/100428-pike-stanford.pdf,
April 2010. Retrieved 15/07/2010.

[22] Terrence W Pratt and Marvin V Zelkowitz. Programming Languages:
Design and Implementation. Pearson Education, Inc., 4 edition, 2001.

[23] Dirk Riehle. Case Study: The JHotDraw Framework. In Framework
Design: A Role Modeling Approach, chapter 8, pages 138–158. ETH
Zrich, 2000.

[24] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Busch-
mann. Pattern-Oriented Software Architecture, Volume 2: Patterns for
Concurrent and Networked Objects. Wiley, Chichester, UK, 2000.

[25] Panu Viljamaa. Client-specified self. In Pattern Languages of Pro-
gram Design, chapter 26, pages 495–504. Addison-Wesley Publishing
Co., New York, NY, USA, 1995.

[26] N. Wirth. Programming languages: What to demand and how to
assess them. In Symposium on Software Engineering. Belfast, April
1976.

[27] Bobby Woolf. Null object. In Pattern Languages of Program Design
3, chapter 1, pages 5–18. Addison-Wesley Longman Publishing Co.,
Inc., 1997.

