Nicholas Cameron

2b11 mini-project 2: Java-- compiler
The goal of the project is to build a compiler for a subset of the Java language (which I have drolly christened Java--). I will concentrate on the paradigm specific features of the language (the object oriented features such as type subsumtion and dynamic binding of methods) rather than the more procedural elements (different primitive types, loop constructs etc.).

The compiler will generate class files that may be executed on a Java Virtual Machine. However, I will only use the assembly language like features of the byte code language and avoid the built in facilities to handle objects, methods etc. Thus the challenge of the project will be to compile object oriented features to assembly level (non-oo) instructions.

I will not be endeavouring to create a robust and scalable piece of software, more a proof of concept. The results of compilation also will not be of a ‘professional’ standard, in particular I will not be attempting any code optimisation, so the class outputs will be much larger and slower than might be possible. I will also not concentrate on optimising the compiler (ie increasing the speed of compilation).

Source code overview

I have used the JFlex scanner generator and CUP parser generator to produce the lexer and parser for the project. The classes in the parser package are generated by these two programs and handle the parsing of files. The specifications for the code generators are in the files directory. The java_cup.runtime package contains the CUP runtime classes.

My code produces assembly mnemonics, these can either be output as a .j file or they can be assembled to produce a class file. The assembly is done by the Jasmin assembler. I had to make minor modifications to the code so that it would integrate into the project (mainly changing the package structure) because Jasmin uses a very old version of the CUP runtime that ‘clashed’ with the version in my project. The Jasmin code is therefore included as source rather than in a library (jar file) and is in the jasmin package along with the required CUP runtime.

The ‘entry point’ class is jmmc in the source root, this handles parameter parsing in the command line version (the main() method) and top level compilation coordination (the compile() method).

The utils package contains two utility classes. ParamUtils is for manipulating parameters during compilation. StringUtils is from a library created and owned by Merchant Internet, used with permission. It has been heavily tested and used in software and so is not tested in this project. It performs some minor utility tasks on Strings, mainly used in the web interface.

The compiler package contains the classes that perform the post-parsing compilation. The compiler.Compiler class co-ordinates this (see below for further details). The tests package contains the JUnit tests and test suite for unit testing and a class to perform semi-automated system testing (see the section on testing). The web package is used for the web interface to the software, it contains the Settings class that stores the web settings for the project and the MultipartRequest class for handling mulitpart http requests (eg when a file is upload using a file control). This class is open source, although I’ve long lost the name of the author.

The ast package contains the classes that form the abstract syntax tree, generated by the parser and processed by the compiler package. The tree is built of nodes, all of which inherit from the Node abstract class. The ast is an implementation of the composite pattern and supports the Visitor pattern (Gamma et al.) All these classes are fairly small and simple and so I have not commented them to the same extent as the rest of the project. Node.java contains comments for the methods that all the nodes inherit.

To allow refactoring in the compiler package I added several ‘mixin’ interfaces that some nodes implement. There are also abstract classes that contain shared functionality.

The ast package:

	Abstract classes
	Node
	All nodes in the tree inherit from Node.

	
	BinaryNode
	An expression with two children – eg binary operators

	
	UnaryNode
	An expression with a single child – eg unary operators

	
	ExprNode
	A node which represents an expression

	
	SlotNode
	A slot in a class, ie a method, constructor or field.

	Interfaces
	NodeWithValue
	A node that has a value that may be visited, eg a StringNode has the string as its value.

	
	InvocNode
	A node that is an invocation, ie a method invocation, super call or new operator (which calls the constructor)

	
	MethodNode
	ConstructorNode inherits from MethodNode as there is a lot of shared functionality (a constructor is a method)

The Java-- language

I tried to keep the Java-- as close to Java as possible (both syntactically and semantivally) whilst making it easy to compile. A program written in Java-- can be converted to a Java program by replacing any occurrence of ‘print()’ by System.out.print(), ‘exit()’ by System.exit(0) , ++ by +, && by & and || by |. Classes may have to be separated into different (appropriately named) files also. Unfortunately the reverse transformation is not as easy.

I have added the print and exit statements (since the runtime libraries are not supported) and separated addition and string concatenation (both use the + operator in java, I use the ++ operator for string concatenation).

The Java features not supported are: Exceptions, static methods/fields, final bits, while/do loops, nested classes, packages, imports, threads (the volatile keyword etc.), <, > and other comparison operators, arrays, many primitives, switch statements, abstract classes, interfaces, casting, instanceof. I’m sure there are others I’ve missed.

Java-- supports only ints and booleans as primitive types and has Object and String as built in classes. It supports the for and if statements (but not the else part of an if statement), +, -, /, *, ==, !=, !, && and || operators (&& and || are logical and and or operators respectively, they do not implement short circuit semantics, but they may not be used for bit wise and/or so I have used && rather than &). I have tried to emulate the object oriented features of Java as closely as possible, the major differences are the lack of support for static methods and fields and that Java-- is more picky about defaults (it requires an access modifier for all methods, constructors and fields and default values for all fields (and local variables), eg ‘private int x = 0’ is OK but ‘int x’ is not).

Java-- grammar

	program ::= (classDef)+

	classDef ::= 'class' name ('extends' name)? '{' (classPart)* '}'

	classPart ::= fieldDecl | methodDecl

	fieldDecl ::= modifier type name = expression ';'

	methodDecl ::= modifier type name '(' argList ')' compoundStatement

 | modifier name '(' argList ')' compoundStatement //constructor

	statement ::= stExpression ';'

 | compoundStatement

 | 'if' '(' expression ')' statement

 | 'for' '('(expression | decl)? ';' expression ';' (expression)? ')' statement

 | 'return' expression ';'

 | 'exit()' ';'

 | decl ';'

 | 'super' '(' paramList ')' ';'

	compoundStatement ::= '{' (statement)* '}'

	expression ::= stExpression

 | expression '.' name //field access

 | '(' expression ')'

 | expression '+' expression

 | expression '++' expression

 | expression '-' expression

 | expression '*' expression

 | expression '/' expression

 | expression '||' expression

 | expression '&&' expression

 | expression '==' expression

 | expression '!=' expression

 | '-' expression

 | '!' expression

 | name //local variable or field

 | 'this'

 | '"' string '"'

 | number

 | 'true' | 'false' | 'null'

	stExpression ::= assignment

 | expression '.' name '(' paramList ')' //method invocation

 | name '(' paramList ')' //local method

 | 'new' name '(' paramList ')' //constructor

	modifier ::= 'public' | 'protected' | 'private'

	type ::= 'int' | 'String' | 'boolean' | 'Object' | name

	argList ::= type name (',' type name)*

	paramList ::= expression (',' expression)*

	decl ::= type name '=' expression

	assignment ::= (expression '.')? name '=' expression

A string may contain: \n, other escape sequences would be easy to add but are not supported by Jasmin

Language implementation

The implementation of the language in the way I wanted provided some pretty major obstacles: the JVM has no support for pointers (except to objects, which I was trying to avoid), types can not be mixed in arrays, eg I could not keep an int and a String pointer in the same array, the operand stack must have consistent depth at any point in the program (in practice this means that the stack must be at a constant depth when ever you jump to a certain label). For these reasons I had to create several features that would have been present in other assembly languages.

I used a heap and a stack for memory as well as four temporary registers and ‘registers’ for local variables. The heap and stack were implemented as arrays of ints, with the index into the array acting as an address. The registers and local variables were stored as local variables. I also required a string pool to store strings since I could not store references to strings as local variables with type int or in my arrays of ints. The string pool is an array of string references and I store a string as an int that is the index into the string pool, at that position is the string reference.

(Note: I have created many abstractions that have the same name as those provided by the JVM, this can easily lead to confusion, I will try my best to differentiate between the JVM and J-- features (eg java.lang.String/J-- String objects, JVM objects and classes/J-- objects and classes, the operand stack/J-- stack, JVM string pool/J-- string pool, JVM local variables/J-- local variables).

I do not do runtime checks for array overflow, the JVM will detect these and throw an ArrayOutOfBoundsException. Also I do not attempt any garbage collection (or provide a ‘delete’ operator) this means the heap can be easily exhausted. However, no permanent memory leak will occur since the JVM will tidy up on exit.

The JVM local variables are used as follows (the JVM type is shown after the description):

	0
	‘this’ pointer I

	1
	The heap [I

	2
	The heap pointer I

	3
	The string pool [Ljava/lang/String

	4
	The string pool pointer I

	5, 6
	Callee saved registers I

	7, 8
	Caller saved registers I

	9
	The stack [I

	10
	The stack pointer I

	11+
	Local variables I

The types of fields/local variables/temporaries is tracked statically, they can be an int, a pointer into the heap or stack, or a pointer into the string pool.

Both classes and objects are stored in the heap, they are stored separately as class and object descriptors respectively. The number of classes (nclass) is known at compile time, each class is assigned a number (its class number, in the range 0 to nclass-1), also at run time. These are used to layout the heap: the first nclass ints are the addresses of the class descriptors (ie the class with class number x will have its class descriptor stored in the heap at offset x). After the class index are stored the class descriptors, both these areas are written at program startup. Following these areas, the rest of the heap is used for object storage.

Class descriptor:

	Offset
	Data

	0
	Number of fields

	1
	Number of methods

	2..2 + nmethods
	Method numbers (used in the jump table)

	2+nmethods
	Superclass class number

nmethods is the number of methods in the class and includes inherited methods (this includes over ridden methods, so if a class inherits 1 method, over rides 2 and declares 1 new method then nmethods = 4). The number of fields, number of methods and superclass class number are not actually used, but they could have been and it would be a lot of effort to remove them.

The methods are ordered:

Super class methods

Class methods

Constructors

This means an inherited method will have the same offset in both the parent and child classes. The class descriptors thus act as a vTable for method dispatch, the offset of a method is known at compile time (all methods have a unique method number, and a offset that is the same in each class that the method is in or over ridden in), looking this up in the class descriptor at run time gives the method number of the static method to call (see below for method call/return).

Object descriptor:

	Offset
	Data

	0
	Class number

	1
	Number of fields

	2.. 2+nmethods
	Field values

Again the number of fields is not used. Fields are stored statically so they can be used directly (object offset + 2 + field offset), super class fields are stored before class fields so inherited fields have the same offset in different classes (known at compile time).

A restriction of the assembler is that code addresses can not be used directly, you can only ‘goto’ a label not a number (that would be the program counter for a byte code). This means I have had to use a jump table for both procedure calls (these are procedure calls and not method invocation at this level) and returning from them. Each method number is associated with a label at compile time and a jump table is used to jump to the right label. Whenever a procedure call is made the a return label is generated and a number is associated with is and stored (all at compile time), at run time the ‘return address’ (the number associated with the return label) is pushed onto the stack. When a procedure returns, program control jumps to the return table where the return value and return address are swapped on the stack and the return address used as the index into a jump table to go to the correct return address.

The actions performed to make a procedure call are:

· Save a copy of the this pointer and any local variables on the stack

· Push the return ‘address’ onto the stack

· Push the target object onto the stack (will become the new this pointer)

· Push the parameters onto the stack (in left to right order)

· Identify the method label and jump to it via the jump table

· …

· Return to the return ‘address’ via the return table

· Pop the return value

· Restore the this pointer and any local variables

Fields are also initialised using a form of procedure call, however the label to jump to is known at compile time so a jump table is not required for this, the return table is still required however. The field initialiser takes no parameters and returns the value the field is to be initialised to.

Compiler implementation

Compiler package:

	SymbolTable, Symbol, ClassSymbol, MethodSymbol, VarSymbol, FieldSymbol, ParamSymbol, ScopeSymbol, StringSymbol, TypeSymbol, VariableSymbol, AccessSymbol.
	The symbol table.

	SymbolTableConstructor
	Visitor, creates the symbol table

	SemanticChecker
	Visitor, performs type and scope checking

	CodeGenerator
	Generates assembly code

	CodeGenVisitor
	Helps CodeGenerator by visiting the ast

	Modifier
	Type safe enum, represents the public, protected and private access modifiers.

	NumberGenerator
	Generates and keeps track of method numbers, local variable numbers etc.

	Visitor
	Visitor abstract class

	Compiler
	Co-ordinates compilation

The source code is first parsed by the CUP generated parser (and JFlex scanner). This creates an abstract syntax tree for the program. Unfortunately I didn’t have much time to work on the error reporting during parsing so you simply get a “Syntax error” message.

The symbol table is then constructed by visiting the ast with a SymbolTableConstructor visitor. This detects duplication errors (eg duplicate classes, methods, parameters or local variables) as well as putting all the built in and user defined classes, methods, fields and local variables into the symbol table.

The next stage is resolution of the symbol table. Classes are checked to ensure any inheritance is valid (the super class exists, no circular inheritance etc.) and also that over riding methods have the same type as the methods they over ride. After these checks are performed method and field offsets are assigned (method and field numbers are generated during symbol table construction).

The third stage in semantic checking is to check scope and type in the ast, this is preformed by the SemanticChecker visitor. This visit traps the bulk of errors in the source code and further updates the symbol table (eg types are resolved from their names (eg “int”) to pointers into the symbol table).

Finally, the compiler checks that a correct entry point exists (by examining the symbol table). A correct entry point is a class named Main, with a public constructor that takes no parameters and a public method named main that also takes no parameters. In the generated code, an object of class Main is instantiated and then its main method called.

After the source has been checked code generation takes place in a single pass of the ast and symbol table. The ast is visited by a CodeGenVisitor object and this generates the ast dependent code. The CodeGenerator class takes care of the ‘boiler plate’ code that is required for any program and the symbol table dependent code (although it is possible the entire code could be generated from the symbol table with some minor changes).

The last step (if required) is to use Jasmin to translate the assembly code to Java byte codes.

The structure of the assembly output is:

	JVM boiler plate - <init> method (constructor), main(String[]) method

	Initialisation of the heap, string pool, stack, registers, local variables

	Write the class declarations to the heap

	The entry point code, followed by System.exit(0)

	Built in classes methods and field initialisers

	User classes methods and field initialisers

	Jump table (for procedure call)

	Return table

	Error handling routines (very basic)

	JVM boiler plate – end of main method declaration

I focused on the executable output and so I have not commented the assembly code particularly well, mainly just the comments I used for debugging.

As this is the first compiler I have written I didn’t have a very solid plan at the beginning of the project. I relied on quite intensive refactoring as I went along, although there are certain areas that would have required very large amounts of effort to correct (eg redundant information is often stored both in the symbol table and at run time). Several classes that started as good design decisions (eg the visitors) quickly turned into very large and unwieldy classes, I managed to solve this to a certain extent (eg by splitting the CodeGenVisitor into CodeGenVisitor and CodeGenerator), but these large classes are a still a bad smell. I believe there are better design approaches that could be utilised in the compiler and ast packages. In particular I believe the following are bad design factors:

· The mix of interfaces/abstract classes in the ast package

· The amount of very similar classes in the ast package

· The large classes in the compiler package (SemanticChecker, CodeGenVisitor, CodeGenerator)

· The Symbol classes (especially ClassSymbol) seem to do too much - they started as entries in the symbol table, but have ended up making significant contributions to semantic checking and code generation

· NumberGenerator is responsible for too many types of ‘number’

· The symbol table class graph is a bit unruly – it could benefit from some serious refactoring or at least being put in its own package.

The web interface

The web interface provides a way to compile source code over the web, to try it visit http://www.nicholascameron.co.uk/jmmc. As this is not the main point of the project the web interface is a pretty cheap and cheerful solution The meat and potatoes of the system are two pages – index.html and results.jsp. Index.html takes the input from the user (the type of input, the input to the compiler, the type of output required). Results.jsp takes the http request sent by index.html, processes the request, calls jmmc.compile() to compile the source input and displays the results, if compilation was successful it will provide a link to download the produced file. This could be more elegantly solved using a servlet to process the http request and compile the input and the JSP to display the results, but it would be considerably more effort.

The other files in the defaultroot directory are for displaying information about the project (including sample.jsp which displays the various sample programs) and download.jsp which provides a file for download and forces the browser to save/open the file rather than displaying it in the browser.

Testing

Due to the complexity of the project and the wide use of refactoring testing was essential during development. However, due to the nature of the task unit testing was very difficult for all but the simplest helper classes (where I used JUnit tests). It may have been possible to change the design of the compiler to allow easier unit testing, and this would be necessary if the project were to be further developed. The problem is that to test anything that happens post-parsing you need to create a non-trivial ast as input for the tests and this is very time consuming to do by hand. Also as the parsing elements are generated by well used (and one hopes tested) software there are very few bugs in the parser that aren’t caught during compilation. It is therefore tempting to use the parser to create the inputs for tests and at this point we are pretty much doing system, rather than unit, tests.

I therefore created a system for doing semi-automated system tests. These are run using the SystemTests class in the tests package. The tests directory contains test programs in the ‘correct’ (programs that should compile) and ‘errors’ (programs that should not compile) directories. These directories are scanned for .jmm files and are compiled by the compiler. Errors are reported and the count of passed tests is output. Thus we have a suite of easily runable and repeatable tests. This method is only semi-automatic because we have to manually check the output to make sure the right error was given by the compiler and manually run the output classes to make sure they run as expected. Also in the tests directory is the ‘samples’ sub-directory that contains larger sample programs to demonstrate the compiler and test its use on ‘larger’ programs. These are also compiled by the SystemTests class.

Conclusion

I am happy with the project, it does what I set out to do and does it fairly well. There are plenty of things that could be improved and plenty of extensions to the project that could be considered.

As noted above there are some fairly fundamental design problems with the project, if it were to be extended then a re-write would be a definite option. The project has provided valuable experience and I could plan a re-written compiler much better. The alternative would be some serious refactoring.

Some ideas for improvement to the project (apart from the underlying design):

· Improve error reporting, in particular some decent error reporting during parsing would be nice. During semantic checking too many errors are often reported, eg if the rhs of an assignment is bad then an error is reported as it should be, but then another is reported because the type of the rhs (unknown) does not match the type of the left.

· Optimisation, the compiler itself could be made more efficient and the output code could very easily be optimised (at least to start with), there is almost no end to the amount of output code optimisations that could be added.

· Making the Java-- language more ‘compliant’ with the Java language, ie so that a Java-- program could be directly compiled by a Java compiler.

Some ideas for possible extensions to the project are (some of these are mutually exclusive):

· Re-targeting the compiler to compile for machine code.

· Adding garbage collection.

· Extending language support to the rest of the Java language

· Add the ability to interoperate with existing Java classes (eg the libraries).

· Make use of the JVM mechanisms for object orientation (this undoes most of the hard work in the project, but is a step towards a ‘real’ Java compiler.

The project does what I set out to do: it compiles object oriented features to non-oo assembly code. It handles situations that I was unsure it would be able to cope with and will compile fairly complex programs. I’ve learnt a lot about compilers and the JVM from the project and I’ve gained a new appreciation for what goes on ‘behind the scenes’ in an object oriented program.

Compilation, installation and execution

The project should compile using javac (ver 1.4+) in the root of the src directory (use “javac ./parser/*.java ./compiler/*.java” etc. This is much easier in an IDE such as Eclipse or JBuilder, I have included the JBuilder project files). The JUnit and tomcat servlet jars must be in the classpath if compiling on the command line or linked in the project if using an IDE. Compiled classes can be downloaded from http://www.nicholascameron.co.uk/jmmc.

To run on the command line use:

java jmmc [-asm] [-heap <x>] [-pool <y>] <filename>

The parameters are:

-asm:
Compile to Jasmin bytecodes (.j file) rather than a class file

-heap:
Specify the maximum size of the runtime heap for your program.

-pool:
Specify the maximum size of the runtime string pool for you program

<filename>: The name of the file to compile.

To run the system tests use “java -cp classes test.SystemTests” in the project root directory. To run the unit tests use “java -cp d:\programs\junit\junit.jar;classes test.AllTests” (changing d:\programs\junit\junit.jar to the location of junit jar) from the project root directory.

To run the web interface you can either visit http://www.nicholascameron.co.uk/jmmc or install the project on your own server. This should go as follows, create a new context for the project on the server, copy the contents of the defaultroot directory into the root directory of the context (this should just be the jmmc directory). Modify the Settings class in the web package and re-compile the project (this requires a rebuild if using JBuilder). Copy the compiled classes (the test package is not requred) into the WEB-INF/classes directory in the context. Create an ‘empty’ web.xml file suitable for the context and copy into the WEB-INF directory. And it should work…

