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Abstract

This project is an investigation into rendering that can be considered beyond photorealistic. That is, where graphical effects are used in a simulation to convey information rather than purely for visual realism (in a similar way to non-photorealistic rendering). Specifically emphasising the presence of the user by allowing them to see the effect of their presence in the simulation.

An extensible software simulation was developed that implements several such effects: reflections of the user, shadows of the user (and integrating shadows and reflections), a complex avatar and porting to the CAVE. Experiments to test the impact of such techniques on the user’s feeling of presence were planned. In addition various algorithms for computing shadows were investigated and a method of integrating these algorithms presented. Two different algorithms were implemented in the simulation and were combined effectively.
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1 Introduction

Three dimensional computer graphics have improved immensely since they were first introduced. We are now close to achieving the long standing goal of photorealistic computer graphics. That is, a view of a scene rendered by a computer that is indistinguishable from a photo of the same real life scene. However, we are still a long way off having such photorealism in real time. Real time graphics entails that a user can interact with a simulation and the simulation will respond without any noticeable delay in rendering.

The aim of this project is to investigate rendering techniques that emphasise that the user is in the simulation rather than simulating a camera view. It is believed that such an approach will increase the user’s immersion in the simulation. This will be tested by experimentation.

The achievements of this project centre around the development of an extensible virtual reality simulation. This system can be run in the CAVE and employs techniques that go beyond photorealistic rendering. Shadows (using two different algorithms), reflections and a complex avatar were implemented and integrated together. A survey of shadow algorithms was conducted and methods to integrate these algorithms were found.

1.1 Computer graphics and virtual environments

“Computer graphics is concerned with the modelling, lighting, and dynamics of virtual worlds and the means by which people act within them.” [24]

More generally computer graphics is concerned with communicating some information from a computer system to a user of that system in a graphical (as opposed to textual) manner. A symbolic rather than realistic approach is often taken to do this (for example the icons in a typical Windows program) which can result in a more intuitive user interface. This project is more concerned with the kind of computer graphics defined in the quote: realistic, three dimensional computer graphics. As will be mentioned later (photo-)realism is a long term goal rather than something that can be achieved at present. Computer graphics of this nature are often part of a computer system that simulates a virtual environment. Such a simulation entails much more than rendering this virtual environment to some kind of display (the computer graphics element). It must handle input from the user; show the effects of the user’s interactions within the environment; calculate the dynamics of objects within the environment, and so forth. Further more in order for the simulation to be interactive all the above must be achieved in real time (i.e. without any noticeable delay).

One aim of computer graphics has been the implementation of photorealistic rendering, that is producing images that are indistinguishable from photographs of the scene (if the scene being modelled exists). An alternative to this is so called non-photorealistic rendering where the aim is to produce images that convey more information or are otherwise ‘better’ than a photorealistically rendered image rather than aim for pure visual realism.

1.2 Project summary 

The aim of this project is to explore graphical techniques that fall into the category of beyond photorealistic rendering. Going beyond photorealism implies that more information will be conveyed to the user than if the simulation were photorealistic. This concept is shared with non-photorealistic rendering where the emphasis is on conveying information rather than visual realism. However, in this project the simulation should be photorealistic rather than ‘cartoonish’ or in other ways non-photorealistic.

Unfortunately photorealism is not currently possible in real time (as will be described below) and so photorealism is taken as a guide rather than a goal. In this project techniques that emphasise the user in the simulation to a greater degree than traditional simulations will be implemented. That is, the simulation should make the user feel more present in the virtual world than could be achieved with a photorealistic simulation. It is in this way that the simulation will go beyond photorealism.

In practical terms a simulation should be developed in which a user can participate by moving an avatar around the scene and possibly interacting with objects in the scene. The simulation should implement a number of different graphical effects that emphasise the user’s presence in the scene. Experiments should then be conducted (or at least piloted) to assess the impact of the various techniques employed.

One of the techniques that will be implemented is shadows. There are many ways to use and to implement shadows. As well as experimenting with some of the ways shadows can be used to enhance the simulation, some of the different ways of implementing shadows will be investigated. This will include how shadows generated using different methods can be combined in a simulation.

It is important that the simulation runs in real time, otherwise the illusion of a virtual world will be shattered. It is also essential that the various graphical effects employed should work seamlessly together. It is beyond the scope of the project to aim for photorealism, instead it will be shown how certain effects increase the functional realism of a simulation in a photorealistic (as opposed to non-photorealistic) manner.

On the technical side, the simulation should be deployed in a CAVE simulation environment (see section 3.8) this entails writing the system in C or C++ (C++ has been chosen due to the associated software engineering benefits) and using the OpenGL graphics library.

1.3 Report Structure

I’ll start the report by outlining the motivation and background to the project (section 2): the graphics techniques and technologies (2.5), research on the concept of presence in a simulation (2.3) and an overview of related work (2.6). I will then describe in detail the various graphical effects used in the project and how they are implemented (section 3). Section 4 will compare various shadow algorithms and section 5 will outline how they can be integrated (and how this was implemented in this project). These three sections cover the main work carried out in this project. This will be followed by the analysis, design and implementation work I carried out to develop the software (section 6). I will briefly describe how experiments can be conducted in order to determine what effect the implemented effects have on the user’s feeling of presence (section 7). I will finish by evaluating the project (section 8), outlining the scope for future work (section 9) and concluding (section 10). System and user manuals, sample code, the project plan and interim reports are included as appendices.

2 Motivation and Background

This section will cover some of the background and motivation for the project. Different approaches to realism will be covered: including how these definitions relate to this project and what is meant by beyond photorealism. Presence, the extent to which the user feels present in the simulation, and the graphics techniques employed in the project will be introduced. The motivation for conducting the project and some related work will also be covered.

2.1 Photorealistic and Non-Photorealistic Rendering

A simulation must function in real time: noticeable delays in the simulation will severely hamper the user’s experience and destroy the illusion of the virtual world. In addition the simulation must be sufficiently realistic to persuade the user that they are in an alternate reality (but see below for a discussion of non-photorealistic rendering). However, there is a trade off between these two requirements: the more realistic the simulation is, the more computer power is required (in general). And thus the harder it is to make a simulation run in real time. It has so far been impossible to run a real time simulation with anything approaching photorealistic graphics.

There are various ways in which an image or simulation can be considered realistic. The following factors are mentioned in [24]:

· Geometric realism is how closely the geometry of an object in a scene matches (or appears to match) the geometry of the real object that is being modelled. This is obviously easier to measure if the object exists in the real world, however, even if the ‘real’ object is theoretical then we can apply the concept of geometric realism by applying measures such as the apparent smoothness of curves. Geometric realism can in general be improved by using more detailed models and more accurate rendering methods.

· Illumination realism refers to how realistically a graphical model is lit. Better degrees of illumination realism are achieved by rendering effects such as shadows, refraction and reflections. Or by using techniques such as radiosity and ray tracing that better model real world illumination.

· Behavioural realism is concerned with how closely the behaviour of objects in the simulation matches the behaviour of real world objects. For example if people are represented in the simulation then the behavioural realism is increased if they react to user input in a realistic way and exhibit behaviour such as blinking or fidgeting.

In [c] the author proposes three varieties of realism that are orthogonal to those mentioned above. These are physical-, photo- and functional-realism.

· An image is physically-realistic if it produces the same visual stimulation as the scene it depicts. That is each point in the image must accurately reflect the spectral irradiance values of that point in the scene. This is currently impossible to achieve since even if the simulation and model are perfect, current display technology can not reproduce the rendered light energies.

· Photorealism is where an image looks identical to the scene to a human viewer (in the same way as a photograph). By relaxing the constraints of physical realism we can take advantage of the imperfection inherent in the human visual system, this allows us to (for example) represent colours using the RGB scheme (trichromatic) rather than having to use the full spectral representation. Photorealism will be discussed further below.

· Functional realism means that an image conveys the same information as a scene it represents, an example is technical diagrams, which although are certainly not photorealistic they are often more informative than a photo of the object represented.

For an image to be considered photorealistic it must be indistinguishable from a photo of the same image. This entails global illumination requiring techniques such as ray tracing or radiosity. Global illumination is where the illumination of a point in the scene is calculated taking into account the rest of the scene. This is as opposed to local illumination where only the object at that point and the light sources are considered. Global illumination algorithms include ray tracing and radiosity. These basic techniques produce good quality images for certain types of scenes, for example ray tracing produces good images for scenes consisting of shiny (plastic or metal) objects with direct lighting (such as spotlights). Other methods of rendering (photon tracing, distributed ray tracing, light fields, etc), have produced more photorealistic scenes with less restrictions on the contents of the scene by better accounting for a combination of diffuse and specular reflection. The Problem with these methods is that they are very slow, typically far too slow for real time use.
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 Fig 2.1.1: A ray traced image, approaching photorealism [10].

An eventual goal of computer graphics is to have real time, photorealistic rendering. Progress is being made towards this goal in two directions: speeding up rendering methods that currently produce image qualities approaching photorealism and improving the quality of rendering methods that can already render in real time.

Much of the work in the first approach has focused on improving the speed of ray tracing. This can be done by either (or both) of improved algorithms and specialist  hardware, such as using many parallel processors. Examples of these approaches are [28] and [19] respectively.

The opposite approach is to improve the quality of graphics produced using the real time pipeline. The real time graphics pipeline is the usual method of producing 3d graphics in games and other real time simulations. Hardware support is common and thus high quality, real time simulations can be produced. The last few years have seen a flood of improvements to this rendering method becoming common place. Many current games support high quality shadows, reflections, bump mapping, per pixel lighting and so forth. An example of the kind of graphics produced is shown below.
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 Fig 2.1.2: A screen shot from the game Doom 3, showing high quality real time graphics 

An alternative to the pursuit for photorealism is in non-photorealistic rendering [27]. Here there is no attempt at physical- or photorealism instead alternative rendering styles are used that are functionally realistic. Non-photorealistic images may be rendered to appear like conventional cartoons, painted pictures, wire-frame images or many other styles. The benefits of non-photorealism include increased communication of information, expression and aesthetics. It can also be easier to render non-photo realistic images as the simulation does not have to conform to the user’s expectations of realism. It can therefore be possible to convey more information to the user in real time than using photorealistic rendering.

2.2 Beyond Photorealistic Rendering

Given time real time photorealism will almost certainly be realisable; but, this may not be the ultimate achievement of computer graphics. In many situations photorealism is not the ideal solution: it has already been pointed out that non-photorealistic images can convey more information than photorealistic images. In a simulation of a virtual environment the simulation is a simulation of the user and not of a camera. The aim is not to emulate a photograph (or video) but to convince the user that they are part of the simulation, or that the simulation is reality. To do this requires more than just photorealism, the simulation must go beyond photorealism in order to persuade the user that they are part of the simulation. An example would be the shadow of the user: in a photorealistic image the user is not part of the image and so there is no shadow of the user in the image. In an image that is rendered in a way that is beyond photorealistic a shadow may be present which emphasises the user’s position in the scene. Even where photorealism is not currently possible (for example a real time simulation), techniques that can be classified as beyond photorealism may make the user feel more present in the scene than those that make the simulation more photorealistic.

Examples of effects that may be regarded as beyond photorealistic include:

· shadows of the user;

· reflections of the user;

· interaction between the user and other objects in the scene using realistic physics;

· rendering the user’s breath;

· the user causing ripples in puddles;

· the user casting a ‘rain shadow’, i.e. stopping rain from falling in the shelter of the user’s avatar;

· turbulence in mists when the user is present;

· showing the user’s foot prints.

A previous example of using such a technique is in [26] where a virtual cursor has a shadow that is not physically accurate; but gives better information on the cursor’s position and direction. This proved useful in object manipulation tasks.

2.3 Presence

Presence is the sense of being in or reacting to a place [24]. It can be (and has been) defined in many other ways such as to what degree the user feels a part of the simulation as opposed to being ‘in’ reality and viewing images. Presence can be used as a measure of the quality of the simulation. Presence is measured using questionnaires [32][22], behavioural measures [6] or physiological measures [17].

Presence is felt to a certain extent in any virtual experience: reading a book, at the cinema, playing a computer game, daydreaming or ‘proper’ dreaming. The sense of presence in each situation is different and each is different from the presence felt in reality (putting aside mental illness and hallucinogenic drugs). In an immersive simulation (such as in the CAVE, see section 3.8), the sense of presence can be very similar to that felt in reality (or not felt, it is fairly uncommon to notice that one is in reality).

There has been a lot of research into which factors affect this feeling of presence and to what degree (for example [16][22]). In general more photorealistic simulations produce a greater sense of presence [24]. The aim of going beyond photorealistic rendering in this project is to increase the sense of presence without necessarily increasing the photorealism. This is connected to the concept of functional realism (discussed above) and using non-photorealistic rendering to convey more information than photorealistic rendering can achieve. In this case the ‘information’ is presence and we aim to retain a degree of photorealism.

2.4 Motivation

Presence is very important in an immersive simulation. There is still uncertainty as to how to maximise presence whilst still maintaining frame rates. Much effort has been expended making real time simulations more photorealistic and also to increase the information conveyed (and sometimes this information is related to presence) using non-photorealistic rendering. With this project it is wished to investigate another possible method to increase the sense of presence using concepts from both of these paradigms. If this approach is successful then it will be possible to increase the sense of presence without investing the effort or processor time that is required to achieve this result by improving the photorealism of the simulation.

2.5 Overview of Graphics Techniques

A number of graphics effects will be implemented as part of this project, these are texture mapping, shadows, reflections, using detailed models for the user’s avatar and using a CAVE system (this brings head tracked graphics and a very large field of view). These techniques are fairly commonplace when considered alone, combining them, however, presents some challenges, these are detailed in the section on graphical techniques.

The effects implemented are all fairly standard graphics effects found in many simulations. The innovation is in how they are used – to emphasise the user rather than purely to increase the visual realism. The purely graphical techniques used are shadows, reflections and texture mapping (although this does not add much to the functional realism of the simulation). Implementing shadows in a simulation aim to emulate shadows in real life, that is areas of partial darkness where the direct illumination of an object is blocked by an occluding object. In real life shadows are soft: there is a dark umbra and this is surrounded by a penumbra which gradually fades from partial to normal illumination. Soft shadows are much more difficult to compute than hard shadows (where only the umbra is rendered) and only hard shadows are considered in this project. This is common practice in real time simulations where soft shadows are generally too time consuming to render. In a real scene there are many reflections, all shiny surfaces display some kind of reflection, even if it is merely a specular highlight. Most metallic surfaces and many others reflect the surrounding scene to some extent. In this project the reflections present in mirrors are considered. These are ‘perfect’ reflections since the reflected image is in no way warped (for example if it were reflected by a curved surface) or ‘corrupted’ (by a coloured or slightly dull surface). Texture mapping is a way to add detail to polygon models. Objects that appear realistic can be presented in the scene without the excessively high polygon counts that would be required to model the object accurately using only coloured polygons.

Texture mapping and using detailed models merely improve the visual quality of the simulation making it more believable. Shadows and reflection (specifically shadows and reflections of the user) also improve the visual quality, but more importantly they add strong visual cues that the user is part of the simulation. They should therefore do more to improve the sense of immersion in the artificial reality. 

Cave Automatic Virtual Environment [3] (or CAVE-like) systems are a series of large displays (typically four, five or six – the walls, floor and ceiling of a cube) surrounding a volume of space. The user is free to move around within this space and his or her movements are tracked via head tracking, there may be other sources of user input such as a joystick held by the user. The user may wear glasses that alternate opening the left and right lenses so that stereoscopic rendering can be used. In contrast to some other virtual reality systems the user can see his or her body whilst in the CAVE, this makes the simulation more realistic but means objects can not be rendered in front of the user (for example the user can not hold an object). Obviously the user’s avatar should not be rendered in a CAVE simulation.

The features provided by using the CAVE rather than a standard desktop display system bring further gains in immersion: by synchronising the simulation to the user’s movements the interactions between the user and simulation are more intuitive and this will increase the feeling of presence. The other effect of using a CAVE system is that there is a much larger field of view. In fact the field of view is similar to in reality, this means there is no distraction from the simulation and this will increase the feelings of immersion.

2.6 Related work

There has been much work that is related to that presented here. In particular a lot of the work dealing with presence has focused on which effects give the greatest sense of presence: not necessarily focusing on the photorealistic effects. There has also been a great deal of work in the area of non-photorealistic rendering. The concept of conveying the maximum information (functional realism) rather than the maximum photorealism is relevant to this work as this is what we seek to achieve where the information conveyed is presence. More traditional graphics work that seeks to improve the level of photorealism is related as the effects implemented here are taken from such research (for example [5]) and since photorealistic rendering is the ‘baseline’ for this work.

There is a large body of work on presence (see for example the journal “Presence: Teleoperators and Virtual Environments” or the website [34]). One example (of many, chosen as the theme of experimentally investigating the sense of presence is similar to the aims of this project) is [16] in which the author investigates (experimentally) presence and performance in virtual environments.

As an example of relevant work in non-photorealistic rendering: in [11] the authors present a method for rendering virtual environments in a non-photorealistic style. Although they did not investigate presence in their simulations (this is outside the scope of their work), it would be an interesting direction.

In [14] the authors explore a similar idea to that of beyond photorealistic rendering. Images were enhanced by artists and these enhancements were shown (by experimentation) to increase the perceived realism of the image. This is another (although different) view to take of beyond photorealism. Only single, static images were considered.

3 Graphic Effects

In this section the various computer graphics effects implemented in the project will be discussed. For each effect an overview will be given along with some background. This will be followed by detail on how the effect is implemented in the project and how this effect is made to integrate with other effects. The impact of the effect and the result of not using the particular technique or parts of the techniques will also be covered. The effects will be discussed in the order in which they were implemented.

3.1 Texture Mapping

Texture mapping is a fairly standard technique and is essential in any realistic simulation. In texture mapping a two dimensional image (the texture) is rendered as the pattern on a polygon, the texture must be aligned and oriented properly for this effect to look realistic. Implementing texture mapping is fairly simple since it is directly supported by OpenGL. This means that it integrates properly with the other effects and with the CAVE (the changes required to loading a texture map under VR Juggler will be discussed in section 6.2).
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A cube without texture mapping
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A texture mapped cube and background

	Fig 3.1.1: Texture mapping
	


As can be seen from the screen shots above texture mapping adds a great deal of detail to an image. Without texture mapping the image does not look at all realistic. Although texture mapping does not provide any additional information about the geometry of the scene the addition of textures makes an object more readily identifiable. For example the brick texture on the walls in the screen shot on the right make it clear that the user is looking at a wall and not some other large object in the scene. Also the increased level of detail makes the scene more photorealistic. The impact of texture mapping is therefore high and it should be used in any simulation.

As mentioned above texture mapping is easy to implement. In terms of OpenGL calls, a texture must be loaded into graphics memory using the glTexImage2D command (other parameters must be specified before hand, please see the method Texture::loadTexture() for the details). Each time an object is sent to OpenGL the texture to be used must be specified using glBindTexture and, for each vertex, a texture coordinate must be specified using glTexCoord*. In addition the textures must be loaded from a file into memory before they can be transferred to video memory.

In this project the class Texture loads a texture from disk into memory and then to the graphics card, it stores the id for a texture and binds a texture for use before a polygon is sent down the pipeline. The specification of texture coordinates is done in the Polygon class as the polygon is sent. Finally there is a TextureManager class. This manages the textures in the system so that there are no duplicated textures and a texture is only ever loaded once from disk. So that the textures can be quickly and easily loaded from disk they are stored in a custom format (*.tex). This consists of the image in the same format (bit for bit) as required by OpenGL with some minimal header information. A small Java program was written to convert images in jpg, gif or png format to this custom file format.
3.2 The Stencil Buffer

The stencil buffer is not a visible effect, but rather a hardware supported technique that is used again and again to help implement the following effects. 

The stencil buffer is an array of pixels the same size as the depth and colour buffers (the hardware memory that is mapped to the display). The stencil buffer can be written to in the same way as the colour buffer. A test can be specified so that a value is only written to the colour buffer if the pixel in the same place in the stencil buffer passes this test. Different effects can be specified depending on whether the fragment passes or fails depth testing. How the stencil buffer is to be updated can also be specified (for example set the value of a pixel, increment the value of a pixel, decrement the value, etc.). The stencil buffer is therefore a very flexible and useful mechanism.

The stencil buffer is used both as an integral part of rendering effects (for example shadow volumes) and more commonly to restrict the effect of the techniques in some way, i.e. to prevent undesirable side-effects of the technique that manifest as visual imperfections if not specifically handled. For example clipping reflections to a mirror polygon or more generally to combine two different effects.

Below is an example of how the stencil buffer can be used to render shadows:
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First pass: ambient illumination
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Stencil buffer: white areas have zero value black areas have non-zero value
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Second pass: diffuse and specular illumination

	Fig 3.2.1: Stencil buffer example


In this example shadows are created in two passes using the stencil buffer. In the first image the scene is rendered using ambient illumination only. The stencil buffer is then marked as non-zero where there are shadows in the scene, the second figure shows this, although the stencil buffer is not usually visible. In the second pass the scene is rendered using diffuse and specular illumination. The stencil test is set so that the result of the second pass is only rendered to the colour buffer where the stencil buffer is zero. The effect is that of shadows, shown in the third figure.

3.3 Reflections

Being able to look in a mirror and see yourself is an obvious visual clue. If the movements of the avatar in the mirror match the movements of the user then this should enhance the feeling of presence. In order to present this situation we must be able to model reflection in the virtual world.

In the simulation, an object in the scene must be denoted as a mirror. It is dealt with as a special case from the other objects in the scene. Currently there is only scope for one mirror in the scene. Having multiple mirrors, but only one at a time visible to the user should be relatively easy to implement. Having multiple mirrors visible at once is more tricky, due to the use of the stencil buffer, especially if reflected shadows are to be rendered also (see section 3.5) as this limits the number of bit planes of the stencil buffer that can be used. There is also the issue of how to deal with reflections of reflections (and reflections of reflections of reflections and so on, recursively).

The simple case (and the prototype implemented first) is when there is a mirror that is axis aligned. In this case the world is simply flipped about the axis (using glScale). Then clipped (i.e. only render objects ‘behind’ the mirror) using the plane of the mirror. Finally the stencil buffer is used so that reflected pixels are only drawn where they are covered by the mirror. The matrix stack is then popped (to remove the scale) and the non-reflected scene is drawn normally. The mirror polygon is drawn to the z-buffer only so that depth testing causes the mirror image to be rendered properly with respect to the non-reflected scene.

If the scene is not restricted to the mirror polygon using the stencil buffer or is not clipped by the mirror plane then reflected objects that should not be drawn will appear outside of the mirror, appearing as normal objects but with reflected shading. An alternative to using the stencil buffer to restrict the reflected scene to the mirror would be to also clip the scene by planes perpendicular to the mirror and aligned with the mirror edges. However, in this case the objects will appear behind the mirror in the scene, viewable when the mirror is viewed from the side or from behind. 

In the general case of an arbitrarily located and aligned mirror a little more work is needed. First the world must be translated so the origin is at the centre of the mirror, then rotated so the x-axis (in general any axis could be used) is aligned with the mirror polygon. Then the world is flipped about the x-axis and clipped as in the simple case, the stencil buffer is also used to restrict the reflections to the mirror polygon. The inverse of the above transformations is performed and the scene is drawn. The effect is to simply flip the scene about the arbitrary plane of reflection and results in correct reflections. This is shown in the diagram below.
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1. The scene
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2. Translated to the origin
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3. Rotated so the mirror is axis aligned
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4. The scene is reflected
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5. Rotated to original orientation
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6. Translated to original position


Fig 3.3.1: Transformations for general case reflection. The black line represents the mirror, the black squares: objects in the scene and the red squares objects in the reflected scene.

The user’s avatar must show up in the reflection, but could cause problems if rendered in the non-reflected scene and so when drawing the scene the system must be aware of whether it is drawing a reflection of the scene or the scene. This is accomplished by using a boolean value.

Summary of rendering stages:

· Render the mirror polygon to stencil buffer only (not to the colour or depth buffers), marking the pixels as non-zero.

· Transform the scene as described above and render to the colour buffer only where the stencil buffer is non-zero. This prevents the reflected scene being seen at the sides of or behind the mirror. Render only back facing polygons (as opposed to front facing ones normally) and the depth test is performed in reverse (ie using GL_GEQUAL as opposed to GL_LEQUAL), this is done so the scene is rendered correctly despite being reflected.

· Render the mirror polygon to the depth buffer only.

· Render the non-reflected scene as normal. Depth testing prevents the reflected scene being incorrectly overwritten.

3.4 Volumetric Shadows

Shadows are an important visual cue within a virtual environment. They add realism in two ways: they make the scene look more photorealistic and they provide visual clues to assist with locating objects in the scene. They are pretty much required in any modern simulation. In this project shadows are drawn using the shadow volumes technique, making use of the stencil buffer as outlined in [5].
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Box without shadow
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Box with shadow

	Fig 3.4.1: Volumetric Shadow
	


It is commonly accepted (for example in [31]) that shadows aid depth perception. And, in [23] the authors found evidence for an increase in presence due to dynamic shadows. Since shadows vastly improve the photorealism of a scene and the functional realism (by providing depth cues) they are important in a simulation.

One important shadow is the shadow of the user. It is highly likely that if the user can see his or her own shadow this will benefit the user’s experience. Technically this is not very different from the other shadows in the scene, but problems were encountered when using a complex avatar rather than a simple box, see below (section 3.7). It is very common for the user’s eye (the ‘camera’ in the scene) to be within the user’s own shadow and this is a reason for using depth-fail testing (see below). The main difference is that we are drawing the shadow of an object that is not visible in the scene (the user’s avatar is only rendered in reflections), care must be taken in the implementation to achieve this.

There are various ways to implement shadows in a simulation, these are covered in section 4. The first shadows implemented for this simulation were computed using shadow volumes. In this technique a volume (a truncated, semi-infinite pyramid) is constructed for each polygon that faces the light. This is the volume of space behind the polygon that is hidden from the view of the light source. The pyramid formed is infinite in the direction opposite from the light source and bounded by the casting polygon in the direction of the light source. The edges of the pyramid are called shadow planes and are formed by extrapolating from the light through the vertices of the polygon. When rendering an image a ray is traced from the eye to the fragment to be rendered. A count is kept of the intersections between the ray and any shadow volumes in the scene, incremented when entering a shadow volume and decremented when leaving one. If the count is zero the fragment is not in shadow, if it is zero then the fragment is in shadow.
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Fig 3.4.2: Illustration of shadow determination using shadow volumes. The numbers give the intersection count for the fragments highlighted with a black dot. The + and – symbols indicate where the count is incremented and decremented respectively. Original diagram taken from [12] and altered.

When implemented in hardware the stencil buffer is used. The shadow planes are rendered to the stencil buffer and this is used to determine whether a fragment is in shadow. Depth testing is used so that only intersections between the eye and the rendered fragment are considered. The problem with this approach is that if the eye is itself in shadow then the counts will be incorrect. To solve this problem the ray is traced from the fragment to infinity. The count is equivalent (actually it is negated, but we are only interested in the count being zero or non-zero) to counting between the eye and the fragment since the count must always be zero at infinity. This is done by only counting intersections where the depth test fails. Since the stencil buffer can not accommodate negative values the count is incremented when leaving a shadow volume and decremented when entering. This variation of the algorithm is known as Carmack’s reverse or depth-fail testing [5]. It is used in the simulation since the user will very often be inside a shadow volume such as the user’s own shadow.

Two rendering passes are made: first the entire scene is rendered using ambient light only. Then the shadow volumes are rendered to the stencil buffer. The stencil buffer is incremented where a back facing plane of the shadow volume is rendered and decremented where there is a front facing shadow plane. All the back facing planes are rendered first followed by all the front facing planes. This results in the value zero in the stencil buffer where a pixel is lit and a non-zero value where a pixel is in shadow. Finally the entire scene is rendered again using diffuse and specular light only and only where the stencil buffer value for the pixel is non-zero. This gives accurate shadows.

A shadow is calculated for every polygon in the scene (technically only those polygons facing the light source). One standard optimisation which should be implemented is to calculate the silhouette of each object in the scene as seen from the light source and use this to cast the shadows. This requires a lot of effort to calculate the silhouette, but vastly cuts the number of shadow volumes and thus geometry that has to rendered to the stencil buffer.

The scene is stored in a scene graph like fashion (see section 6.3 for more details). An object is rendered by first pushing a matrix onto the matrix stack to transform the object to the correct location and orientation. Then the object is sent to OpenGL located at the origin and axis aligned. This must be taken into account when calculating the shadow volumes and drawing the shadows. When calculating the shadow volume the light position is transformed by the inverse transformation used to draw the object. The shadow volumes are transformed in the same way as the object before being drawn and thus the shadows themselves are drawn correctly.

Pseudo code showing the OpenGL commands used:

//**first pass (ambient lighting)**

//turn on ambient lighting

float ambient[] = {0.2, 0.2, 0.2, 1.0};

glLightModelfv(GL_LIGHT_MODEL_AMBIENT, ambient);

//turn off diffuse/specular lighting

light->enable(false);

renderScene();

//**render shadow volumes**

//enable the stencil buffer

glEnable(GL_STENCIL_TEST);

glStencilFunc(GL_ALWAYS, 0, ~0);

//disable writes to the colour and depth buffers

glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);

glDepthMask(GL_FALSE);

//render the backs of the shadow volumes, into the stencil buffer by 

//incrementing the count there

glCullFace(GL_FRONT);

glStencilOp(GL_KEEP, GL_INCR, GL_KEEP);

renderShadowVolumes();

//render the fronts of the shadow volumes, into the stencil buffer by 

// decrementing the count there

glCullFace(GL_BACK);

glStencilOp(GL_KEEP, GL_DECR, GL_KEEP);

renderShadowVolumes();

//**second pass (diffuse/specular lighting)**

//enable writing to the colour buffer

glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);

//draw only if the value in the stencil buffer is 0

glStencilFunc(GL_EQUAL, 0, ~0);

glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);

//enable depth testing, passes if equal to what is there already

glDepthMask(GL_TRUE);

glDepthFunc(GL_EQUAL);

//blend this pass with the last one

glEnable(GL_BLEND);

glBlendFunc(GL_ONE, GL_ONE);

//turn off ambient lighting

float ambientOff[] = {0, 0, 0, 0};

glLightModelfv(GL_LIGHT_MODEL_AMBIENT, ambientOff);

//turn on diffuse/specular lighting

light->enable(true);

renderScene();

//disable blending

glDisable(GL_BLEND);

//disable the stencil buffer

glDisable(GL_STENCIL_TEST);

//normal depth testing

glDepthFunc(GL_LEQUAL);
3.5 Interaction of shadows and reflections

If there are to be shadows and mirrors in our world then reflections of shadows must be handled correctly. If both effects are used as outlined above we end up with the reflection being rendered as if it is totally in shadow (see screen shots below).  The problem is that both shadows and reflections make use of the stencil buffer and they thus interfere if no precautions are taken. The mirror is rendered non-zero into the stencil buffer and so is skipped in the diffuse pass as if it were in shadow.
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Portion of a mirror and its shadow, incorrectly rendered as if the reflection in the mirror were entirely in shadow.
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Similar scene with correct rendering of reflection.

	Fig 3.5.1: Shadows and refelctions
	


The technique is to use the highest order bit of the stencil buffer to mark the mirror and the lower order bits for shadows. Care must be taken with the ordering of the rendering passes and in the case that there is an occluding object between the viewer and the mirror. This can cause the anomalous shadows shown in the screen shot below if any possible occluders are not cleared from the area of the stencil buffer marked by the mirror.
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Fig 3.5.2: Incorrect rendering of reflected shadow over occluding object. The box in the background is a reflection, the box in the foreground is part of the non-reflected scene.

The ordering of rendering passes is thus:

· Render the mirror to the highest order bit in the stencil buffer.

· Draw the rest of the (non-reflected) scene (except the user’s avatar) to the stencil buffer (see note below), setting the stencil buffer to zero where an object comes between the user and the mirror.

· Depth buffer is cleared.

· Reflected scene is rendered under ambient light only.

· Shadow volumes are rendered to stencil buffer.

· Reflected scene is rendered under diffuse and specular light only where not in shadow.

· Mirror polygon is drawn to depth buffer.

· Non-reflected scene is rendered under ambient light only.

· Shadow volumes are rendered to stencil buffer.

· Non-reflected scene is rendered under diffuse and specular light only where not in shadow.

(See section 3.4 for more details)

When rendering the reflections there is an extra stage from the previous situation. After rendering the mirror to the stencil buffer the entire scene (except the user’s avatar) is then rendered to the stencil buffer using depth testing so that whenever an occluder comes between the viewer and mirror it is cleared from the stencil buffer. This stops reflected shadows appearing on occluders as shown in the screen shot above. After this the depth buffer must be cleared so that the scene reflected in the mirror is visible, this wasn’t necessary when rendering only reflections since depth testing was not used and so writing to the depth buffer could be disabled when rendering the mirror polygon.

When rendering the reflections the following OpenGL commands are used to ensure that only the highest order bit is read and written:


glStencilMask(0x80);


//to render the mirror polygon


glStencilOp(GL_REPLACE, GL_REPLACE, GL_REPLACE);

glStencilFunc(GL_ALWAYS, 0x80, 0x80);

//when rendering the scene to handle occluders


glStencilOp(GL_KEEP, GL_KEEP, GL_REPLACE);

glStencilFunc(GL_ALWAYS, 0x0, 0x80);

//when rendering the reflected scene

glStencilFunc(GL_EQUAL, 0x80, 0x80);

glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);


The non-reflected ambient pass is rendered without using the stencil buffer (the depth test prevents the reflected scene being overwritten). The mirror bit is also ignored when rendering shadow volumes since we know it will be 0. This bit must not however be overwritten and so the mask function is used to prevent this:


glStencilMask(0x7f);

When rendering the reflected shadow volumes care must be taken to cull the correct faces (the opposite facing ones from when rendering non-reflected shadow volumes).

The mirror bit must not be overwritten and ignored when deciding when a fragment is in shadow. We use:


glStencilMask(0x7f);


//when writing the shadow volumes


glStencilFunc(GL_EQUAL, 0x80, 0x80);


//when rendering diffuse pass


glStencilFunc(GL_EQUAL, 0, 0x7f);

3.6 Avatar

Up until this point a simple box has been used for the user’s avatar (an avatar is the user’s representation in the virtual world). Having an avatar that more closely resembles the user will make the simulation more photorealistic and increase the user’s feeling of presence as the visual clues provided by, for example, the user’s shadow will be closer to the visual clues experienced in real life. It should be noted that the user does not directly see his or her avatar in the simulation, it is only apparent when looking in a mirror or by the shape of the user’s shadow. As such the effect of adding a more accurate avatar will not result in an increased impact directly but by enhancing the impact of other effects. Specifically reflections and the user’s own shadow.

In order to implement a more detailed avatar it is necessary to use a more complex representation of the avatar’s model than that used to represent a box (this issue is discussed below in section 6.3). This representation should also handle movement – the avatar should make walking movements as it moves for example. To address these requirements the third party library Cal3D was used (this is discussed in section 6.2). The main issues with using the library were coding problems rather than graphics issues. The only point of interest is that the avatar must be transformed so that it has the same scale and orientation as the rest of the simulation and this requires that a slightly different sequence of transformations is required when drawing the avatar or its shadow (see the User and Cal3Davatar classes for details).

Once implemented the avatar must be carefully tuned so that when walking the feet hit the ground at the same speed as the avatar is moving, otherwise the avatar appears to moonwalk or roller skate, also the shadow must match the feet falls. But, this is accomplished if the shadow algorithm is implemented correctly. If the shadow and reflection algorithms are implemented correctly then no further work is required for the avatar to work correctly with these effects.

Once the Cal3D library is added to the system, the model can be changed very easily. During development a skeleton was used as the model was easily available (supplied with Cal3D) and it is easy to check that the avatar is rendered correctly. When deployed this should be replaced with a generic human avatar. A possibility for further work would be to scan the participant in a body scanner and use this information to make a very accurate avatar. This would vastly improve the photorealism of the simulation, how much effect this might have on presence is unclear however.
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The simple ‘floating box’ avatar. Note: in normal use the avatar is not visible.
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The more complex skeleton avatar, note how the feet line up with shadow.

	Fig 3.6.1: Avatars
	


3.7 Shadows of the Avatar (Fake Shadows)

It was noted above that for the user to see their own shadow could be a very powerful visual clue and have a positive effect on the user’s experience of presence. When using a simple avatar (for example the box above) no extra work is required to display the user’s shadow (although care must be taken as the shadow of an object that is not visible must be displayed). However, when using the more complex avatars described above there are several problems: drawing the shadow volumes for the many polygons in the complex avatar is too computationally intensive to be viable in real time, thus some optimisation is necessary. More importantly there is no easy way to get at the polygons used by the avatar as they are encapsulated by the Cal3D library. Two possible solutions to these problems were explored: calculating the shadow volume from the avatar’s silhouette and calculating the shadow using a different method – fake shadows
.

The problem with the first approach (calculating silhouettes) is that since the avatar is moving and rotating the silhouette must be calculated dynamically. This is an expensive operation. It can either be done in software by calculating the silhouette edge from the edges of the polygons or in hardware by rendering the avatar from the point of view of the light source and reading the silhouette back using the OpenGL feedback mechanisms. Since the polygons of the avatar could not be accessed the second method had to be used. This proved very technically difficult, in fact a satisfactory silhouette could not be calculated (this was due to not being able to code this procedure correctly rather than any theoretical limitation with the approach). However, enough progress was made to show that this approach was too slow to use in a real time application. Even without drawing the shadow volume, merely rendering the avatar, reading back the silhouette and tessellating polygons from the silhouette reduced the frame rate to less than one frame per second.

This code illustrates how OpenGL feedback and GLU tessellation is used, the call back functions are not shown and some detail is omitted. See the class Cal3DAvatar for more details.


glFeedbackBuffer(64000, GL_2D, buffer);


glDisable(GL_DEPTH_TEST);


glRenderMode(GL_FEEDBACK);


glPushMatrix();


glLoadIdentity();


gluLookAt(…);

…->render();


glPopMatrix();


glEnable(GL_DEPTH_TEST);


size = glRenderMode(GL_RENDER);


if (size > 0)


{



gluTessBeginPolygon(tess, NULL);



loc = buffer;



end = buffer + size;



while (loc < end) {




token = *loc;




loc++;




switch (token) {




case GL_POLYGON_TOKEN:





nvertices = *loc;





loc++;





gluTessBeginContour(tess);





for (i = 0; i < nvertices; i++) {






…






gluTessVertex(tess, v, loc);






loc += 2;





}





gluTessEndContour(tess);





break;




default:





/* Ignore everything but polygons. */





;




}



}



gluTessEndPolygon(tess);


}
With the failure of using shadow volumes for the avatar’s shadow it was decided to use a different method to calculate the shadows. Fake shadows were chosen as they are easy to implement, fast and fairly good quality under the situation present in this system (see the comparison of shadow algorithms (section 4) for more details). Fake shadows were implemented as the algorithm of choice for all objects and then combined with shadow volumes so that the avatar’s shadow was cast using fake shadows and all other objects cast shadows using shadow volumes, see section 5 for details of how this was done.

Fake shadows are produced by projecting the casting object onto the ground plane. This is shown below for a single polygon. In practice this is done by simply loading the projection matrix and rendering the occluding object as normal.
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Fig 3.7.1: Projection of fake shadows from an occluder

The shadow is drawn without texture mapping and is drawn black with an alpha value of 0.5. This effectively darkens the area under the shadow. This is not particularly accurate, see section 4, but the shadows look good to the human eye. To prevent the shadows appearing under the ground plane or the shadows and ground z-fighting the OpenGL polygon offset facility is used, this ensures that the shadow is on top of the ground plane. The following OpenGL statements are used:


glPolygonOffset(-1.0, 1.0);


glEnable(GL_POLYGON_OFFSET_FILL);

The final problem with fake shadows is that if two shadows overlap the pixels will be darkened twice (once for each shadow), this is known as over-darkening. (See section 5 for a discussion on over-darkening due to shadows from different algorithms overlapping). Overlapping is prevented using the stencil buffer. When a shadow is rendered it is also rendered into the stencil buffer (by setting the part of the stencil buffer used by shadow volumes, leaving that part used by reflections untouched), a shadow is only drawn where the masked stencil buffer is equal to zero (it is masked so that the bit used for reflections is not taken into account). This results in at most one shadow being drawn for any pixel.
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Over-darkening in the overlap of two shadows
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Over-darkening eliminated by using the stencil buffer

	Fig 3.7.2: Shadow over-darkening
	


The easiest projection for fake shadows is where the shadows are projected onto the y=0 plane (or z=0, depending on how the axes are laid out) with a directional light source. A matrix for this projection and its derivation is given in many places including [24]. However, for this project it is necessary to project onto any horizontal plane (y=Y, where Y is constant for a given object) since the object casting the shadow may be transformed up or down. This is since, in order for the shadows to be correct, the object must be projected onto the plane y=-Y, where Y is the distance the object is translated in the y direction. Also a point light source is used in the simulation. For these reasons a new projection matrix was derived, although a similar derivation was later found in [1].

For a light at l and a vertex at p we wish to find the point that p is projected to, g, on the y=Y plane. We need a projection matrix M such that p.M = g. From the parametric equation for a line (x = x1 + t(x2 – x1)) we have g = p + t(l – p), but we know that yg = Y so we have: 
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Substituting t into the equation for x we get: 
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Rearranging to put everything over (xl – xp): 
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Rearranging the numerator we have: 
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A similar derivation can be done for zg. From these equations (and yg = Y) we can find the matrix M:


[image: image29.wmf]÷

÷

÷

÷

÷

ø

ö

ç

ç

ç

ç

ç

è

æ

-

-

-

-

-

-

=

l

l

l

l

l

l

l

l

y

Yz

Yy

Yx

Y

y

z

Y

x

Y

y

M

0

0

0

1

0

0

0


This matrix is used in the method renderFakeShadows() in class Renderable.

The following OpenGL commands are used to render fake shadows.

//projected shadow GL setups

glEnable(GL_STENCIL_TEST);

if (reflected)


glStencilFunc(GL_EQUAL, 0x80, ~0);

else


glStencilFunc(GL_EQUAL, 0, 0x7f);

glStencilMask(0x7f);

glStencilOp(GL_KEEP, GL_INCR, GL_INCR);

glPolygonOffset(-1.0, 1.0);

glEnable(GL_POLYGON_OFFSET_FILL);

//blend the shadows with the scene

glEnable(GL_BLEND);

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

glDisable(GL_LIGHTING);

glDisable(GL_TEXTURE_2D);

glColor4f(0.0, 0.0, 0.0, 0.5);

//render the Renderable's shadow in the correct place

glPushMatrix();

glTranslatef(positionX, positionY, positionZ);

//adjust the light so it is in the right place

Vertex translatedLightPos = Vertex(*lightPosition);

translatedLightPos.translate(-positionX, -positionY, -positionZ);

//create the projection matrix

GLfloat shadowMat[4][4];

//...fill the projection matrix as specified above...

glMultMatrixf((GLfloat *)shadowMat);

renderTheObject();

glPopMatrix();

//tear down GL bits

glDisable(GL_POLYGON_OFFSET_FILL);

glEnable(GL_LIGHTING);

glEnable(GL_TEXTURE_2D);
glDisable(GL_STENCIL_TEST);

glDisable(GL_BLEND);

Integrating fake shadows with reflections is easier than shadow volumes. Since the shadows are just normal polygons they will be reflected with no extra effort, they just have to be rendered in the reflection pass as well as the non-reflected pass (note that each object in the scene is now rendered four times: the object, the reflected object, projected as a shadow and reflection of the shadow). The only complication is that the stencil buffer is used to prevent over-darkening and for reflections. However, the work done for integrating shadow volumes with reflections can be built upon. One bit is used for reflections and the other 7 bits of the stencil buffer that were used for shadow volumes are now used for fake shadows. The procedure for doing this is identical to that outlined above for integrating shadow volumes and reflections.

3.8 The CAVE (VR Juggler)
The final ‘effect’ implemented was to port the system from GLUT to VR Juggler in order to run in the CAVE. (See section 2.5 for a brief introduction to the CAVE and section 6.2 for a discussion of VR Juggler). The CAVE brings two main benefits: intuitive control and visual immersion. Ideally the user could control the environment by physically moving or walking on a treadmill, unfortunately this is not possible and so the user’s direction is calculated from the user’s direction in reality but forward and backward motion is controlled by a joystick. This is more intuitive than using a keyboard and so should increase the sense of presence. The increase in field of view provided by the CAVE is a more important factor. Rather than the small range of view offered by a desktop display the CAVE offers a 360º field of vision. This increased field of view means that the user can see the virtual world in the same way as reality is usually viewed. Also there is no reality ‘around the edges’ to distract the user from the simulation. The disadvantage is that using the CAVE requires more programming effort than using a desktop system, this is covered in section 6.2.

The impact of using the CAVE is expected to be greater than any of the other effects. Being surrounded by the simulation rather than just seeing it as a photo (even a ‘moving photo’) is likely to be a great boost to the sense of presence felt by the user, the other effects are much more subtle in their emphasis of the user. In a way this ‘effect’ really highlights that we have gone beyond photorealism.

Most of the effects integrate into the CAVE environment fairly easily, this is in part a tribute to the quality of VR Juggler in that it hides so much of the implantation details. There are some programming issues related to using VR Juggler, namely how textures are stored in memory and using the stencil buffer. These are covered in section 6.2. As mentioned above the user can see his or her own body, this means that some degree of care is needed when rendering the user’s avatar. The avatar should not be rendered in the basic scene but should be rendered in reflections of the scene and the shadow of the avatar should be rendered. The avatar should also be chosen so as to be visually close to the appearance of the user, there was not enough time to get to this stage in the project. There is an issue with aligning the avatar: we can align the footsteps of the reflected avatar to the walking speed (to prevent a roller skating or ‘moon walking’ effect) and we can align the shadow to the reflected avatar (so the footsteps fall at the same time, indeed this is the automatic behaviour if the shadow algorithm is implemented correctly). However, we can not align the non-reflected shadow with the user, so that the footfalls match. This could provide a visual clue that the user is not present in the simulation, however, it is also possible that the user may sub-consciously match his or her footfalls to that of the simulated shadow, this would be very interesting.
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Fig 3.8.1: The simulation in VR Juggler, simulated on a Windows PC. Showing shadows, reflections and the user’s avatar. Note the reflection of shadows and different shadow algorithms. The blue ball and green objects are navigation aids due to VR Juggler, they are only present when the simulation is being simulated on the desktop.
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Fig 3.8.2: Another screen shot of VR Juggler simulated on a Windows PC.
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Fig 3.8.3: Photo of the simulation in the CAVE. Shows reflection of the user and the reflected shadow.
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Fig 3.8.4: Photo of the simulation in the CAVE. Long exposure shows left and right side stereoscopic view.
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Fig 3.8.5: Another photo of the simulation in the CAVE.

3.9 Summary of Rendering Steps

This is a summary of rendering steps in the simulation using all the effects described above. That is fake shadows for the user’s avatar, volumetric shadows for other objects in the scene and reflections. Other effects (texture mapping, using the CAVE, etc) do not require any extra rendering steps.

· clear the stencil, depth and colour buffers

· set transforms to adjust for camera view

· render reflectors

· draw the mirror polygon to the stencil buffer, setting the most significant bit, and to the depth buffer.

· draw the whole scene (without the user’s avatar and any reflectors) to the stencil buffer only, clear the most significant bit when we pass the depth and stencil tests.

· clear the depth buffer.

· draw the entire scene (minus any reflectors but including the player’s avatar) to the colour buffer with depth testing enabled and stencil testing to draw only where the mirror has been drawn into the stencil buffer. The world is first flipped about the mirror and clipped by the mirror’s plane.

· we cull front instead of  back polygons.

· put the OpenGL light into the scene (so it appears reflected) 

· render the scene with ambient light only

· render the back faces of the shadow volume polygons into the stencil buffer (incrementing the value in the least significant 7 bits) only and only where the mirror polygon has been drawn into the stencil buffer.

· as above but with the front faces of the shadow volume polygons and decrementing the value in the stencil buffer

· render the scene with diffuse and specular light into the colour buffer only where the value in the least significant 7 bits of the stencil buffer is 0.

· enable blending and polygon offset, render the shadow of the avatar as darkening polygons, only where the stencil buffer is 0 (least significant 7 bits).

· draw the mirror polygon to the depth buffer only so that when rendering the non-reflected scene depth tests with the mirror produce correct results.

· render non-reflectors

· put the openGL light into the scene 

· render the scene with ambient light only

· render the front faces of the shadow volume polygons into the stencil buffer (incrementing the value in the least significant 7 bits) only.

· as above but with the back faces of the shadow volume polygons and decrementing the value in the stencil buffer

· render the scene with diffuse and specular light only into the colour buffer where the value in the least significant 7 bits of the stencil buffer is 0.

· swap the buffers.
The diagrams below shows how these passes are combined to form the final image for a frame of animation. The shadows etc. are not meant to be completely accurate, merely to illustrate the use of the various buffers in rendering.
	[image: image35.png]


 

Outline of the scene to be rendered. The large rectangle is a mirror, the small square an object in the scene

	Colour Buffer
	Highest order bit plane of stencil buffer
	Low order bit planes of stencil buffer
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clear colour and depth buffers
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clear stencil buffer
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render the mirror to the stencil and depth buffers
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render objects in the scene, clearing the stencil buffer
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	clear the depth buffer
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render the reflected scene using ambient illumination
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Render the shadow volumes of reflected objects

	[image: image51.png]



render the reflected scene using diffuse and specular illumination
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	render the mirror polygon to the depth buffer
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render the scene using ambient illumination
	[image: image55.png]



	[image: image56.png]




	[image: image57.png]



	[image: image58.png]



	[image: image59.png]



render the non-reflected shadow volumes
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render the scene using diffuse and specular illumination
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Fig 3.9.1: Visual summary of rendering steps

4 Summary and Comparison of Shadow Algorithms

There are many different algorithms that could be used to produce shadows in a simulation. Shadows are an active research area and new algorithms as well as variations on existing algorithms are still being produced.

Initially shadow volumes were intended to be a complete solution to shadows in the project. However, it became apparent they could not be used for the shadow of the avatar. Various shadow algorithms were investigated in order to find one that could satisfy the requirements for this (no knowledge of the geometry of objects required, accurate, fast, relatively high quality, capable of casting the shadow of the user). Fake shadows were selected and are covered in section 3.7. How the various algorithms could be integrated was also investigated and this is covered in section 5.

Shadow algorithms can be classified in many ways, they vary in accuracy (in different ways), efficiency and the quality of resulting shadows. Shadow algorithms can be divided into those that produce soft and hard shadows. Soft shadows (i.e. those with a penumbra) are more accurate (except in some rare  circumstances such as where the lighting comes from one small, bright and very close spotlight). Hard shadows are nearly always faster than using soft shadows. In this section I will only discuss algorithms for rendering hard shadows, some of these algorithms can be adapted to render soft shadows.

The algorithms can be broadly divided into additive and subtractive algorithms. In an additive algorithm the scene is first rendered with only the ambient illumination and then the scene in rendered again with only diffuse and specular illumination, but only where there are not shadows. It is additive since the image is built up from the two passes. Volumetric shadows are a good example of an additive shadow algorithm. A subtractive algorithm renders the scene normally and then darkens those parts of the scene that are in shadow, the darkening is the subtractive part. Fake shadows are a subtractive algorithm. In general additive shadows are more realistic since if a subtractive shadow is rendered over a specular highlight or a rounded surface where the diffuse illumination varies then these lighting effects will still be present ‘under’ the shadow where they should not be (and are not with additive shadows).

4.1 Shadow Volumes

Shadow volumes are discussed in detail in section 3.4. Compared to other algorithms they can be fairly fast when supported by hardware and are very good quality [5]. In terms of quality: shadows generated using shadow volumes are per fragment accurate, do not have the drawbacks of subtractive shadowing algorithms, automatically handle self shadowing and are accurate in terms of geometry (as opposed to fake shadows where shadows always appear on a single plane and may extend beyond the geometry being shadowed). The traditional draw back of shadow volumes are that they were neither efficient nor robust. Rendering required two passes of the scene and each edge in the scene produces another polygon in a shadow volume that must be calculated and rendered. This is particularly costly, specifically due to pixel filling of the shadow volumes. In terms of robustness some naïve algorithms for volumetric shadows have issues where the camera is inside a shadow volume or where a shadow volume intersects the near or far clipping planes. These issues have been addressed in the more modern implementations such as [5]. Efficiency by using silhouettes of objects rather than individual polygons for generation of shadow volumes (this was also used in the Crow’s original paper on shadow volumes, [2]) and by hardware support. Optimisations such as using low polygon count models for shadow volume generation are also possible. Robustness by using the ‘depth fail’ technique described above, placing the far clip plane at infinity and using infinite shadow volumes by using homogenous coordinates.

4.2 Fake Shadows

Fake shadows are discussed in section 3.7. They are one of the easiest and fastest shadow algorithms to implement and have been very popular in the past when the hardware to support the less efficient algorithms was not widely available. The down side is that the quality is poor and care must be taken in order to avoid incorrect visual artefacts from appearing.

Fake shadows are a subtractive technique and this means that inappropriate shading may be visible in shadowed areas. In the simulation implemented in this project this is not an issue since all the surfaces that may be shadowed are flat and thus do not exhibit smooth shading that may be visible through the shadows. The main problem with fake shadows is that they can only be projected onto a single plane. This means that the shadows are not projected onto the walls or other objects in the simulation and self shadows do not exist. Also shadows may be cast where there is nothing to cast them upon, for example if there is a hole in the floor then the shadow will be cast where the floor would be if not for the hole. In the implemented simulation the shadows would be visible outside the floor if it were not for the walls that obscure them. If it were not for the walls then the stencil buffer could be used to restrict the shadows to geometry where they should be cast. After the scene is rendered the floor (or other appropriate geometry) is rendered into the shadow buffer and the shadows are then rendered only where the shadow buffer is zero.

One advantage of fake shadows (and the reason they were used in this project) is that no knowledge of the occluding geometry is required. The objects can be put down the rendering pipeline as normal. This is in contrast to (for example) shadow volumes where the polygons comprising the model or its silhouette is required.

4.3 Shadow Z-Buffer

It was hoped to implement shadows using the shadow z-buffer method in the simulation. However, this was not possible due to lack of time. However, this was where most effort (of the other shadow algorithms) was spent. This technique involves rendering the scene with only the ambient light. Then rendering the scene into the depth buffer (known as the shadow buffer or shadow map) from the point of view of the light source. The scene is then  rendered again, this time using only diffuse and specular light. As well as the usual depth test, the point to be drawn is transformed to light space and tested against the shadow buffer, it is only drawn if it passes both tests. Thus only non-shadowed parts of the scene are rendered in the second pass and the effect of shadows is created.[29]

The main problem with the shadow buffer approach is that of aliasing. Due to the transformation between light space and image space there is not a one-to-one mapping between pixels in the resulting image and pixels in the shadow z-buffer. This results in the shadows looking very blocky. This has been addressed in several papers for example [25] and [30]. These put forward variations on the theme of perspective shadow maps. This is where the shadow map is generated after the perspective transformation. Using these techniques results in much better quality of shadows as shown by these screen shots from [33]:
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Normal shadow z-buffer generated shadows, note the blockiness of the foreground shadow.
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Shadows generated using light source perspective shadow maps.

	Fig 4.3.1: Z-buffer shadows from [33]
	


The quality of z-buffer shadows is high: they are accurate (when implemented using the enhancements mentioned above), cast correctly onto multiple planes at any angle and self shadows are handled correctly. They would be suitable for this system in terms of quality and speed (they are efficient to render). Also since the geometry of the objects rendered does not need to be known explicitly they could be used to render the avatar.

Compared to volumetric shadows the quality is not quite as good: the fact that z-buffer shadows are subtractive means that artefacts due to specular and diffuse lighting may be visible whilst this is not a problem with volumetric shadows. Volumetric Shadows do not have the issues with accuracy that z-buffer shadows do. The advantage of volumetric shadows is that they are much faster than volumetric shadows to render.

The quality of z-buffer shadows is much higher than that of fake shadows (although obviously not as fast to render). Fake shadows only render correctly to a single ground plane whereas z-buffer shadows are correct over any geometry. Also fake shadows do not handle self shadows correctly. However, in the situation that shadows are only cast over a single plane then fake shadows will be more accurate due to the aliasing found in z-buffer shadows, but this can be corrected by the enhancements described above so that the difference will be minimal. So in the general case z-buffer shadows are far superior with respect to quality.

4.4 Projected Texture Shadows

This technique is similar to the shadow z-buffer. The scene is first rendered from the point of view of the light into a texture map. The texture is then transformed to image space and rendered into the scene as a projective texture. The same problems with aliasing that affect z-buffer shadows also affected projected texture shadows, similar solutions can be applied. The advantage of this method is that hardware support is better and it is faster than z-buffer shadows as texture mapping is so efficient.

4.5 Shadow Maps

Shadow maps (not to be confused with the shadow z-buffer technique, also sometimes known as shadow maps) is a technique similar to light mapping. Shadows are pre-computed (as a texture map for each object in the scene) and then blended with the textures during rendering. The advantage of this technique is that very high quality shadows can be used (for example using ray tracing or radiosity) since they are computed offline. It is also very fast as no calculations need to be done at run time (other than texture mapping that is very fast indeed with hardware support). Unfortunately the technique can only be used for static geometry as dynamic objects can not have pre-computed shadows. An approach popular in games is to use this technique for the static geometry and another technique for the dynamic shadows.

4.6 Divided Geometry Shadows

For this technique shadows are again calculated offline, however rather than being saved as textures the geometry is divided so that each polygon is either entirely in or entirely out of shadow. At run time all polygons can be rendered as normal and then the polygons in shadow can be rendered as darkening polygons (a subtractive method) or all polygons could be rendered with ambient illumination and then only those entirely out of shadow can be rendered with diffuse and specular illumination. The latter approach would produce higher quality shadows. Which approach is more efficient will depend on the ratio of shadowed to un-shadowed polygons.

This approach should be relatively fast since no calculations are required at run time, however it will not be as fast as using shadow maps since two passes are required instead of one and the number of polygons in the scene will be significantly increased. In fact due to this increase in polygon count the technique may be slower than some of the dynamic techniques. The shadows will be of high quality, but not significantly better than using shadow maps and since they are pre-computed can not be used for dynamic objects in the scene.

4.7 Raytracing

A ray traced image is produced by tracing a ray from the viewer’s eye through a pixel in the image and into the scene. The ray is reflected around the scene and a colour chosen for the pixel from the colours of the geometry intersected by the ray. This is then repeated for each pixel in the image. Ray tracing produces very accurate, high quality images but is too slow, in general, for real time simulation without specialist hardware and/or extreme optimisation. However, real time ray tracing is becoming feasible in limited cases.

Shadows are calculated by shooting a shadow ray from the point in question to each light in the scene. If the ray intersects any other objects in the scene, between the point and the light source, then that point is in shadow. It is only rendered under ambient illumination.

This technique for calculating shadows could be used in a simulation using the real time pipe line if per fragment shading support were present. For each fragment rendered to the colour buffer a ray can be traced through the scene and the point can be rendered with ambient or all illumination as required. This should produce very high quality shadows as it is a additive technique and is very precise (per fragment by its nature). However, the cost of using the technique would be enormous; testing a ray for intersections with scene geometry in this manner is a very expensive technique. Therefore, it is unlikely that this technique will ever be used in a real time simulation.

4.8 Summary of Algorithms

Below is a summary and comparison of the different shadow algorithms described here. Quality is hard to quantify and depends to some extent on how the algorithm is implemented. How costly the algorithm is depends on the situation and the algorithms are only really comparable on a specific scene (fixed polygon counts, geometry, lighting) and hardware. Often the most efficient and high quality shadows for a simulation are achieved by using different algorithms for different situations (for example indoors vs. outdoors) or different objects (static vs. dynamic geometry).

	Algorithm
	Add/Sub
	Quality
	Advantages
	Disadvantages

	Shadow Volumes
	Additive
	High
	
	- Costly

	Fake Shadows
	Subtractive
	Medium
	- Very fast
	- No self shadow

- Casts only on single plane

	Shadow Z-Buffer
	Subtractive
	Low*
	- Geometry not required
	- Hard to integrate with other algorithms

	Projected Texture Shadows
	Subtractive
	Medium
	- Geometry not required
	- Hard to integrate with other algorithms

	Shadow Maps
	Subtractive
	Medium
	
	- Static only

- Hard to integrate with other algorithms

	Divided Geometry Shadows
	Either
	High
	
	- Static only

	Raytracing
	Additive
	High
	- Accurate
	- Very costly


*Can be improved using enhancements to standard algorithm

5 Combining Shadow Algorithms

In this project fake shadows (used for the avatar) and volumetric shadows (used for other objects) had to be combined. How this was done will be covered in detail, how the other techniques can be combined will also be covered. This is necessary since no one technique is better than the others and often the best results are achieved by using more than one technique in a single simulation. For example in a third person perspective simulation of a user in a city environment with many non-player characters, shadow maps could be used for the buildings and other static geometry, shadow volumes used for the user’s avatar for increased detail and fake shadows used for the NPCs, this could be necessary if the NPCs are rendered using image based rendering (as in [15], although the method of shadow calculation in this paper is more complicated) and also for speed.

In [13] the author presents a method using the stencil buffer for mixing subtractive shadow algorithms. The author states it is not possible to combine additive and subtractive methods, instead he presents an altered shadow volume algorithm that is subtractive and combines this with the other algorithms. In this project shadow volumes (using an additive approach) and fake shadows were combined using a similar method. The results are good and the shadows are indistinguishable. However, in general this will not be the case as shadows produced by subtractive and additive methods will not, in general match.
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Fig 5.1: The avatar’s shadow is produced using fake shadows, the box’s by shadow volumes. In this simulation they match well.

The shadow buffer is used to prevent over-darkening. First the scene is rendered using volumetric shadows (requires two passes). After this stage any pixel in shadow has a non-zero value in the stencil buffer and un-shadowed pixels have zero. Fake shadows are then rendered on top of the scene but only where the stencil buffer is zero, furthermore the stencil buffer is set to a non-zero value when a shadow is rendered to prevent over-darkening due to two fake shadows.

Using more than one subtractive algorithm that uses solid polygons (fake shadows and divided geometry shadows) is relatively easy (as illustrated in [13]), the technique is to write to the stencil buffer when rendering a shadow and only render shadows where the stencil buffer is zero. As noted above, shadow volumes can be integrated in this fashion also. The ray tracing method of shadow calculation can also use this technique but applied on a per pixel basis: pixels are only tested for shadows if they are zero in the stencil buffer and the stencil buffer is written when a pixel is found to be in shadow. For any of these methods the ordering of application is not important, for example in this project shadow volumes were calculated before fake shadows but this order could be reversed.

To combine any one of the texture based subtractive algorithms (shadow maps, shadow z-buffer (which does not necessarily use textures, but the principle is similar) and projected texture shadows) with the polygon based algorithms the polygon based algorithms are used first, as above, and then the shadow textures are blended in another pass, but only where the stencil buffer is zero. The stencil buffer does not need to be written to as these algorithms (if used separately) can not cause over-darkening and this will be the last shadowing render pass.

The problem in combining the texture based algorithms is that if two textures are blended over-darkening will occur and the stencil buffer can not be used to prevent this since which pixels are shadowed is not apparent from the geometry alone and textures can not be rendered to the stencil buffer. If there is some way to know a priori that two shadow textures can be rendered without over-darkening (for instance from the geometry of the scene) then they can obviously both be used since no over-darkening can appear. In the more general case no solution is apparent nor is a solution presented in [13].

If the stencil buffer is required for another use (such as reflections, as in this project) then the techniques described in section 3.5 for combing volumetric shadows with reflections can be used to ‘share’ the stencil buffer between the shadow algorithms and the other user or users of the stencil buffer. No further refinements to the technique is required to handle multiple shadow algorithms in the method described above.

It is noted in [13] that combining algorithms for soft shadows is much more difficult as the penumbras must be blended and thus the technique of using the stencil buffer to prevent over-darkening must be adapted or changed. A solution is outside the scope of this project.

6 Implementation

This section will cover how the simulation was designed and implemented. The graphical aspects of the project are covered above in section three and will not be covered again here. The requirements and their analysis will be dealt with first, followed by a description of the libraries used in the project and how they were utilised. Finally the design of the software will be discussed.

The system was implemented in C++ in an object oriented fashion. The complexity of the system lies in the use of the graphics effects. From a software engineering perspective the system is quite simple and certainly small (approximately 25 classes and 3000 lines of code (not including comments)). Therefore (and since the project is a ‘research’ project with fairly open requirements) the design is fairly lightweight and no well defined process is stuck to rigidly. Furthermore, since the focus is on producing a real time simulation efficiency has a higher priority than it would in a typical software engineering project. However, good design has been the priority as the system is designed to be an extensible foundation for further research and there is not so much complexity as to threaten the frame rate. 

6.1 Requirements for the Software

The initial requirements for the system are rather vague and open ended: investigate techniques that come under the category of beyond photorealistic rendering. In order to demonstrate ‘beyond photorealism’ as described above, a first person perspective, real time simulation is required. From the outset it was unclear how many effects could be implemented in the given time frame. The system must therefore be extensible. Most of the effects that should be implemented were not specified up front, the initial requirements were therefore very simple. The only effect considered essential was that the system should run in a CAVE system. The CAVE brings several advantages over a desktop system in terms of emphasising the user in the simulation. However, in order to do this the system must be compatible with the CAVE. The project’s non-functional requirements are therefore:

· The simulation must run in real time, this means at least thirty and preferably sixty or more frames per second (this is the kind of frame rate expected from modern computer games);

· the system must be extensible;

· the system must run on the CAVE.

To meet the last requirement the system was written in C++ and used the OpenGL and VR Juggler libraries. It is required to use either C or C++ to write software for the CAVE. C++ was chosen as it allows object oriented programming to be used which should make the software easier to write, maintain and extend. OpenGL must be used for the graphics as this is the only hardware supported graphics available in the CAVE. Hardware support is required for any simulation with non-trivial graphics to achieve real time frame rates. It is possible to write directly for the CAVE, however, it is difficult to do this and very hard to develop on a desktop PC and target the CAVE. In order to do this easily VR Juggler was used, by using this library the same code can be run unaltered both on a desktop Windows system and in the CAVE (see the next section for details).

The third requirement was shown satisfied by demonstrating the system in the CAVE (although without complete controls). The extensibility requirement is difficult to show to be satisfied. But the system was easy to extend in practice. The frame rate requirement was shown to be satisfied by the system. The frame rate was greater than the frame rate measure could measure, so was therefore at least 70 frames per second. However, this was measured on a desktop PC, it may have been reduced when run in the CAVE, but the simulation appeared to run in real time with no noticeable problems.

The initial functional requirements were:

· the system must be a first person perspective simulation;

· the user must be able to move around the simulation;

· other objects must be present in the simulation;

· the simulation must present a convincing three dimensional environment.

After these initial requirements were met it was expected that at the minimum the following effects would be implemented:

· texture mapping;

· shadows of objects in the scene and the user;

· reflections, including of the user.

Other effects that could be implemented if time allows:

· detailed avatar;

· interaction with other objects in the scene using realistic physics;

· rendering the user’s breath;

· causing ripples in puddles;

· casting a ‘rain shadow’, i.e. stopping rain from falling in the shelter of the user’s avatar;

· turbulence in mists when the user is present.

As well as being able to play host to these effects, the software should be designed and implemented in such a way that complex environments could be simulated. However, actually simulating such environments is beyond the scope of the project.

6.2 Libraries: OpenGL, Cal3D, VR Juggler

Three libraries were used in the project (as well as the Standard Template Library). OpenGL provides a software interface to the graphics hardware. Cal3D is a character animation library: used for supporting complex models of the avatar. VR Juggler is a collection of APIs that simplifies writing virtual reality software. It was used so that the simulation could support the CAVE and desktop PCs without altering the code.

OpenGL [8][18] is an industry standard library that provides a direct interface to the graphics hardware. It is used extensively in the graphics and games industries, indeed nearly all modern graphics software uses either OpenGL or DirectX (a similar library to OpenGL produced by Microsoft for the Windows operating system). OpenGL is designed for efficiency and is very low level. It is also multi-platform and hardware independent. OpenGL does not provide any functionality for window management or managing user input. Initially GLUT (the OpenGL Utility Toolkit) was used for this, and later VR Juggler.

As mentioned above, OpenGL is a very low level library. Functions are provided to draw polygons and to specify how they are drawn using various combinations of light, colour, textures and using various buffers (such as the stencil buffer described in section 3.2). Because of this OpenGL programming can be quite complex and has a relatively steep learning curve. Despite some previous programming experience, difficulties with the more complex parts of OpenGL were one of the major challenges of the project. It was found to take a surprisingly long time to implement features such as stencil buffer shadows due to the complexity of using the commands and difficulty in debugging OpenGL programs. However, using OpenGL or DirectX is a necessity when programming real time graphics and DirectX is not available on the target environment (the CAVE). Furthermore, DirectX is no less complex than OpenGL, and possibly more so due to the increased volume of ‘boilerplate’ code required.

Cal3D [35] is a library for character animation. It was used in this project to provide a detailed, animated model for the user’s avatar. It could also be used to provide high quality models for other objects in the simulation. It is well featured and efficient and hardware and API (OpenGL or DirectX or any custom hardware interface) independent. Unfortunately one result of the API independence is that a lot of work must be done to use the library. For example to render one frame of animation takes 120 lines of code, when ideally it should only take one: character->render(), other basic operations are similarly verbose. Despite this being a design feature of the library it was found to make using the library very difficult. This was compounded by very poor documentation. Several unproductive weeks were spent getting to grips with the library and this is one reason why relatively few graphics effects were implemented. Also, no way was found to get easy access to the components of the model and so it is very difficult to use the library for generating shadow volumes (and presumably for other techniques that require access to the underlying geometry of the model). Due to these points it is believed that using the library was a mistake. A simpler sub-system to handle complex models and character animation that met the needs of this project could probably have been coded from scratch in the time taken to learn and use the Cal3D library; even if no other better libraries are available.

VR Juggler [4][9][36] is a library that abstracts away platform specific elements such as gathering user input and windowing. Essentially it allows you to write code that will work on any supported platform which includes desktop PCs and a wide variety of virtual reality environments. It was used in this project so that the system could be deployed on the CAVE, see section 3.8 above for details.

VR Juggler supports multiple platforms (for example CAVE like systems, desktop PCs, projection tables and head mounted displays) and multiple input devices (for example gloves, joysticks and tracking devices). These displays and devices are abstracted by VR Juggler and so the programmer does not have to deal with them directly. This reduces the complexity of programming for such an environment and means that it is much easier to use different displays and devices when required.

Internally, VR Juggler is organised into distinct components known as managers. These managers are controlled by and communicate via a small kernel. There exists an input manager, an output manager, display manager and several others. For example input devices are managed by the input manager. They are divided into broad categories such as analogue devices and position devices. The application interacts with the device via a proxy. This allows for a degree of abstraction and for the device to be replaced or restarted without interrupting the application.

Each display context (for example one display in the CAVE) is rendered by its own thread. A pool of memory is also shared between these threads. When rendering a simulation to a multi-display device (such as the CAVE) each display is rendered by a different thread. However, the displays are updated at the same time: any threads that finish rendering early are blocked until the others have finished rendering. Then the on and off screen buffers are swapped. The practical consequences of the threading and shared memory model are discussed below.

The advantages of using VR Juggler are that it abstracts away from the complexities of the hardware, allows code to be written once for multiple platforms and that it is efficient, high performance software. The downside to using it is the increase in programming complexity compared to GLUT. However, this is more than offset by the benefits of using the CAVE and using VR Juggler is far less complex than not using it for this task.

The added complexity manifests in two main areas (elsewhere the code is different from GLUT, but not really more complex): using context specific data such as textures and display lists(the only part of the system affected by this were textures). Handling user input also becomes more difficult.

Due to the shared memory model employed by VR Juggler (so that memory can be used as normal in the application but shared across multiple threads) context specific data must be dealt with in a special way. Context specific data is data that is specific to a certain display context (a location where OpenGL objects are drawn), such as textures and display lists. Such data is not shared between contexts and thus must be loaded separately into each context. In implementation terms this has two effects. First care must be taken as to which ‘init’ functions are used to initialise different types of data. Secondly these data must be identified in a different way than just using OpenGL identifiers. In this project textures are loaded from disk into memory in the apiInit() method (which occurs only once for the entire application) and the textures are then loaded into video memory in the contextInit() method (which occurs once for each display context). Textures are identified by a GlContextData<unsigned int> object provided by VR Juggler that takes care of identifying the data in the correct context. Using this object rather than an integer as usual in OpenGL is entirely encapsulated in the Texture class.

The other major difference between VR Juggler and GLUT is in how user input is handled. VR Juggler can handle many kinds of input devices such as hand held joysticks and head trackers whereas GLUT only deals with desktop devices – primarily the keyboard and mouse. In order to do this there is an extra layer of abstraction added for most devices so that different devices in different environments can be handled. For example head tracking can be simulated with the mouse on desktop systems. There is some extra code required to set this up, but it is not very complex (see Application.cpp). The difficulty arises in that the data supplied by the input devices is in the form of several matrices rather than simple key press or co-ordinate information. These matrices can be manipulated in order to transform the displayed scene correctly but this process is fairly complicated. Furthermore, coordinate information is required to update the position and orientation of the avatar (required for reflections and shadows) and this proved very difficult to extract from the data supplied by VR Juggler devices. An attempt was made to integrate VR Juggler user input into the simulation, but this ended up being difficult and due to lack of time was not achieved. Dr Steed implemented a solution to this problem: by correcting a bug in the code for extracting the transformation matrix from the VR Juggler provided input data. Also by using the inverse of this matrix to locate and orientate the avatar rather than using the information stored in the object of class User.

One problem that was encountered with VR Juggler is that by default the stencil buffer is disabled. As the stencil buffer is used extensively to implement the effects in the simulation this is a major drawback. The authors were contacted and a fix was promised in the next version of VR Juggler release, however, this was not in time for this project. A workaround was attempted by editing the configuration files to use a different set of capabilities, however this did not work on the desktop machine used for developing the simulation. In the end the source code for VR Juggler was edited and recompiled (by A Steed).

6.3 Software Design

The underlying architecture was designed to support a fully data driven simulation. That is the environments, objects in the environment, graphics, behaviours, etc. should all be loaded from external files to customise the simulation. This is the usual architecture chosen for modern computer games, where even the artificial intelligence behaviours are stored in external script files. In this prototype only the textures are loaded from files, but externalising the data is made easy by the design. One aim of the design is to separate the content from the rendering code, this was achieved to a reasonable extent. However, the Universe and Mirror classes should really be refactored so as to separate the concerns of content and rendering. This would take considerable work and has, unfortunately,  been precluded by time constraints.

The most fundamental class in the simulation is Universe. This class holds all the data about the simulation: the environment, objects in the environment, user, lights, camera, etc. It also holds most of the rendering code, this should be factored out of this class into another. The class is designed to be sub-classed so each sub-class represents a different simulation, in a data driven architecture a sub-class of Universe could read the high level information about a simulation and the contents of the simulation from a file. The contents of the simulation are represented by a Map, a User and a list of Things.

A Map handles the layout of the simulation (i.e. the walls and other static geometry), the Map class also handles collision detection. It is expected that Map be extended by classes that provide complex environments (specified in data files) and that the collision detection in Map be improved to handle such environments. At present a SimpleMap subclass is provided that is just a square room with no roof and very basic collision detection (walls only).

A Thing represents any object in the simulation, even the User class extends class Thing. Each Thing has an object whose class extends class Renderable. Sub-classes of Renderable represent visible representations of Things in the simulation. The Thing sub-class contains information and behaviour such as the object’s location whilst the Renderable sub-class contains purely graphical details. This allows several Thing objects to share a single Renderable object, as well as separating concerns appropriately. The examples provided in the simulation are FurnitureThing (a Thing that stays in one place and does nothing) and a Box, Box is sub-classed to give two different boxes. It is assumed that both Thing and Renderable would be sub-classed by classes that read their data from files.

As mentioned above the User class extends Thing, it therefore has a Renderable object to delegate rendering to. It also extends Controller and so a User object handles user input as well as having responsibility for the user’s avatar. By having a separate Controller class, it is possible to have simulations without a user in, however, the Camera object is currently a member of User, this should really be moved so that User extends the Camera class as well and is a member of Universe. In this way non-first person perspective simulations could be handled more easily.

It is envisaged that several different ways to display objects would be implemented each extending class Renderable. Two are currently implemented: Cal3D models and simple polygonal models. Cal3D is described above. In terms of implementation the class Avatar extends Renderable and is a wrapper for the Cal3D library, adapted to meet the Renderable interface. This is similar to the Adaptor pattern [7], although the Avatar class does more than just adapt another class. It would be easy to generalise the Avatar class to a more generic Cal3Dmodel class. Although care would have to be taken so that different objects in the world did not have to be in the same animation cycle at the same time.

Originally polygonal models were implemented as polyhedra using a vertex face data structure. A list of vertices is stored and a list of polygons is stored as indices into this list of vertices. This was later changed to a very simple collection of polygons each with their own set of vertices. Despite being less efficient (in memory) than the vertex face data structure, the polygons were more useful as independent entities than as part of a polyhedra. For example in shadow volumes, returned from OpenGL feedback, single polygon models, etc. It was found that there was too much code duplication for the different types of polygon and it was better to have a single basic polygon throughout the system. A better (but more complex solution) would be to have pure virtual classes AbstractPolygon and AbstractPolygonGroup that could be implemented by the different polygons (and polyhedra or groups of polygons) in the system and so they could be handled without code duplication, but have different data structures for different situations.

An interesting design issue was how to implement shadow volumes. These were originally calculated on the fly with no real data structure, simply rendered in OpenGL as they were calculated. It was then noted that an easy and effective optimisation would be to ‘cache’ the shadow volumes that did not change from frame to frame. It was therefore assumed that the light would always be static (as it is in the current simulation). The objects were marked as static (for example the floating boxes) and dynamic (for example the avatar). Dynamic objects had their shadow volumes calculated each frame whereas static objects had theirs calculated once and stored. A ShadowVolume class was created to store and calculate the shadow volumes. Originally the shadow volumes were stored as lists of vertices and then when the polygon data structure was changed (see above) as Polygons. This caching was abandoned when the Renderable was shared between multiple Things as it was too complex to associate a ShadowVolume with a Thing instead of a Renderable. It would be good to implement more intelligent caching of shadow volumes in the future.

7 Experiments

There turned out to not be enough time to conduct experiments, this was disappointing. However, it is anticipated that experiments using the work from this project will be conducted in the near future. The basic design of the experiments would be to ask the user to conduct a task in the virtual world. The world would be rendered with and without the beyond photorealistic effects and a difference in the sense of presence would be sought.

The experiments would be similar to those conducted in [23]. The experiments would first be piloted on a small number of subjects. This would show up any practical problems with the experiments and provide opportunity to analyse the experiments for experimental problems. An indication of whether a change in presence occurred might also be found. Once piloted the experiments could be conducted with a larger number of subjects, say 20. Each subject would conduct several simple tasks and perhaps one or two more complicated tasks. The tasks would be completed once in an environment with the beyond photorealistic effects and once without these effects. An example of a simple task from [23] is moving to an object and picking it up. A more complex task might be constructing a tower of blocks. The presence felt by the subject whilst completing the tasks would be measured and recorded. Presence would be measured using a questionnaire (subjective) and by analysing the behaviour and physiological measures (for example the pulse rate) of the subject (objective).

Some work needs to be done on the software before such an experiment could be conducted. The objects and concepts necessary to complete the tasks would have to written into the system. For example adding movable Thing objects and new Renderable objects. This should be relatively easy unless new concepts such as realistic physics were required.

8 Evaluation

As a whole the project was fairly successful. The lack of any experiments and therefore analysis of the results is disappointing and subtracts from the value of the project, however, performing such experiments should be relatively easy now that the software has been finished. Also disappointing was that the more interesting techniques were not implemented due to a lack of time. The result of these two factors is that the primary focus of the project has been the software implementation.

The software is on the whole of good quality and satisfies the requirements for the software. Since the project requirements were rather vague and in software engineering terms fairly simple no formal evaluation was conducted. In order to test that the features were correctly implemented the simulation was run multiple times searching for incorrect rendering. This process was not automated and informal and so is not entirely satisfactory. There is scope for improvement in the software in the areas outlined in section eight and it would have been nice to implement more effects, but otherwise I am pleased with the implementation.

The system is simple in software engineering terms and so the design is also simple. The design of the software proved adequate for the implementation so far conducted, only minor sections were refactored. The most notable being the change from indexed edge polyhedra to simple collections of polygons (see section 5). The real proof of the system design will come if it is extended to a data driven model, it is believed that this will be an easy transition.

The reason behind the lack of experiments or more interesting graphical effects is that the time taken to implement the software was significantly underestimated. Implementing volumetric shadows was fairly time consuming, but integrating the Cal3D library was the largest source of delay. A lot of time was ‘wasted’ just getting the library to work in the project then attempting to get it to work with volumetric shadows and then implementing fake shadows when this was unsuccessful. In fact using Cal3D was probably a mistake, it would have been better (quicker) either to find an easier to use library or to write the model and animation code from scratch. A better approach to the project may have been to use an already working graphics system that already had features such as shadows implemented, this would have saved a lot of time that could have been used to implement more interesting effects or conduct experiments. However, there is always a learning curve associated with using and extending such a system and so the savings will not be as great as might be expected.

If the project were to be continued then it would be worth while using the software so far implemented as a starting point. If there is enough time it would be worth replacing the Cal3D library with a different library or a custom implementation. The software should be able to be extended to more complex scenes by extending the system to a data driven model, this should be fairly straightforward (although there would be the usual challenges such as parsing and collision detection). Further graphical features should also be relatively easy to add to the system without redesign, the only difficulty would be in implementing the effects themselves.

The problems that were the most intellectually challenging (implementing and integrating graphical effects) turned out not to be the most time consuming, the most difficult part of the project in terms of time and effort was using the Cal3D (and to a lesser extent VR Juggler) libraries. These parts were also the least interesting.

I have learnt a great deal about the more advanced features of OpenGL and some of the techniques of computer graphics in general. I have a much better understanding of how virtual reality systems such as games can be implemented and some of the difficulties that must be faced in doing so.

9 Future Work

The project could be extended in several ways. The obvious gap in the project is that the experiments were never conducted. Also the software could be extended, by improving the system that currently exists and by implementing further graphical effects.

In the longer term the work could be continued by examining other possible aspects of ‘beyond photorealistic rendering’. Possible directions include rendering static images (either in a similar way to the one used in this project or methods with better photorealism such as ray tracing) but include effects in the rendering that go beyond photorealism for example indicating the presence of the viewer in the image. There may also be scope to investigate ‘beyond photorealistic’ effects that do something other than emphasising the user in the simulation or image in a similar way to non-photorealistic rendering conveying information better than photorealistic rendering.

9.1 Graphical techniques

So far in this project the effects used have been fairly fundamental computer graphics effects (such as shadows) that have been used to emphasise the user. Other ‘standard’ effects could also be used in the same way such as implementing realistic physics for the interactions between the user and the virtual environment.

There are also many effects that are not widely used that could emphasise the user in the simulation. These include: rendering the user’s breath when the simulation is of a cold environment, causing ripples when the user steps in a puddle, turbulence when the user walks through mist and casting a ‘rain shadow’, i.e. stopping rain from falling in the shelter of the user’s avatar.

Also improvements to the effects already implemented could improve the presence felt in the simulation. Examples might be using soft shadows rather than hard shadows, this would improve the realism and thus make the self shadow more believable and hopefully improve the presence felt. The user could be scanned using a body scanner and thus create a very accurate avatar. Reflections could be implemented for all ‘shiny’ objects in the scene rather than just a mirror. This would have two effects: making reflections more common place should remove the ‘novelty value’ and the unnaturalness of only having reflections in one place; being ‘surrounded’ by reflections should also increase the impact of the effect. Both of these effects could improve the presence felt by the user.

9.2 Development of the Software

As mentioned in the implementation section the software so far developed is only of prototype quality. Some work could be done to improve the quality of the software such as implementing polyhedra and animated models that could replace the Cal3D avatar. There are some areas that are slightly ‘hacked’ and could benefit by being refactored into a better design such as the integration of the VR Juggler library (animation cycles are not used properly which is one of the benefits of using the library). One useful change would be to extend the framework to be fully data driven, that is the scenes and all the objects in the scene are specified in data (text) files. This would make the system more extensible (in terms of providing more complex environments) and easier to work on.

Other minor improvements which could be implemented include: having a separate texture for each polygon (as opposed to for each object) and implementing volumetric shadows for the avatar by editing the Cal3D code.

In terms of the research theme of the project experiments could be conducted in larger, more complex environments. The difference (if any) between the impact of the effects implemented in virtual environments likely to be used in real life and in the trivial simulations implemented so far could be observed.

9.3 Experimental Work

The largest omission in the work so far is that the hypothesis of beyond photorealistic rendering has not been tested experimentally. See section 7 for how these experiments might be conducted. This experimental work could be extended by devising other experiments that could test the hypothesis and conducting these to see if they support the results of the experiments suggested. As mentioned above work could be conducted to establish if the effects noticed in the somewhat contrived experiments hold in more complex and realistic simulations. Another direction could be to investigate whether the effects implemented to emphasise the user have a significant effect in previous experiments relating to presence such as those conducted at UCL to investigate problems with public speaking [20] or fear of heights [21].

10 Conclusion

This project set out to investigate graphical effects that could be classified as going beyond photorealism. In this project that means effects that emphasise the user in the simulation. Several effects were implemented and combined and it is believed that these should lead to the user feeling more present and involved in the simulation. An experiment to show this was designed but, unfortunately, was not carried out due to time constraints.

The achievements of the project and challenges overcome include:

· implementation of an extensible and well engineered virtual reality simulation that runs in the CAVE;

· mirroring;

· calculation of shadow volumes and rendering of shadows;

· derivation of fake shadow matrices and implementation of fake shadows;

· combining volumetric and fake shadows;

· combining reflections with the two shadow algorithms;

· using the Cal3D library to produce a complex avatar.

The simulation was fairly successful: the image quality was fairly good and the simulation operated in real time. Not as many effects were implemented as was desired, this was due to delays in implementing some of the effects (especially volumetric stencil shadows) due to their complexity and in learning and integrating the Cal3D library. Overall, the project was slightly disappointing but, in the end, a success.

Appendix A: System manual

The source code for the project is supplied on the accompanying CD. A Visual Studio project is included, this can be used in Visual Studio version 7.0 or greater, although it is only tested on version 7.0 and so may need altering to work with other versions. An executable is included in the debug directory, this should work under Windows if the required DLLs are present on the system (see below for libraries). The project can be compiled simply by using the Visual Studio ‘build’ command. The locations of the libraries will need to be changed to match the locations in the system used to build the software, this can be done in the project properties dialog box.

The following libraries are required: OpenGL (version 1.4 was used, but earlier versions might work); Cal3D (version 0.9, [35]) Cal3D requires compilation using Visual Studio but this is relatively straightforward see [35] for details; VR Juggler (the latest version at the time of writing does not support the stencil buffer and thus had to modified and recompiled, this version is included on the CD, however, it is probably better to download the latest version from [36] and use this as stencil buffer should be included very soon). If installed as instructed on the various websites and the project properties altered to take account of the locations of the libraries then no further configuration should be necessary.

The following classes are from outside the project and have just been added in: tga and tick. The file project.cpp contains the main method for the project. All the other files contain a single class (one .cpp and .h file for each class), the project does not define any namespaces and uses std and vrj. See section 6.3 for further details on the other classes. Universe.cpp contains the main rendering section and is a good place to start to understand the rendering code (with the section on graphics techniques).

The version of the software implemented using GLUT is also included on the CD, this may not be quite as up to date as the VR Juggler version, but should be the same or very similar. This version is slightly simpler that the VR Juggler version and may be easier to understand. It also has an additional debugging feature to show visually the contents of the stencil buffer and (with a little alteration) to show the frame rate.

Appendix B: User manual

The system is very simple to use, once started there are very few controls. To start the program run the simulation from Visual Studio this will ensure the correct arguments are passed. The project properties will need to be adjusted so that the working directory is correct (should point to the directory containing the avatar model which should be a subdirectory of the project directory). The program takes a single argument which should be the appropriate VR Juggler configuration file. The controls within the program depend on the contents of the configuration file. There will be controls to walk forwards and turn left or right, there may be controls to walk backwards or to move sideways (‘strafe’). Currently this is simulated by using the ‘wasd’ keys (forward, strafe left, backward, strafe left, respectively) as does the GLUT version, the GLUT version also uses the mouse (hold down the left mouse button) to turn to the left and right. The following keyboard commands toggle the given effect:

	key
	effect

	z
	show the stencil buffer (removed from VR Juggler version of software, still present in GLUT version)

	x
	volumetric shadows (fake shadows for the avatar)

	c
	show shadow volumes

	v
	show objects in the scene

	b
	show reflections

	n
	move camera without avatar and show avatar

	m
	fake shadows


The effects in grey are intended only for debugging.

Appendix C: Sample code

Below is listed some sample code from the project. The entire source code can be found on the attached CD. The code that deals with most of the graphical aspects and the more interesting software engineering aspects is listed below. The header file and implementation is given (in that order) for each class listed.

class Universe

{

public:


Universe(void);


virtual ~Universe(void);


//render the universe to screen


virtual void render();


//update all objects in the universe


virtual void update(float elapsedSeconds);


//render all non reflecting objects in the universe


//showAvatar=true ==> render the user's avatar


//reflected=true ==> the universe should be rendered as if it is a reflection


void renderNonReflect(bool showAvatar, bool reflected);


//initialise the universe and all objects in it


virtual void init();


//add an object to the universe


void addThing(Thing *thing) { things.push_back(thing);}


//collision detection


//currently only handles collisions between the user and the map


bool collide(Thing *thing) { return map->collide(thing); }


//return the controller object for the universe


Controller *getController() { return user; }


//render everything physical (ie not camera/lights) in the universe to opengl


void renderScene(bool showAvatar);

private:


vector<Thing *> things;


Map *map;


::User *user;


Light *light;


//add n small boxes to the universe


void addRandomBoxes(int n);


//render the shadow volumes of all objects in the universe


void renderShadowVolumes(void);


//render fake shadows for all the objects


void renderFakeShadows();

};

void Universe::render()

{


user->getCamera()->render();


//render any reflectors


for (unsigned int i = 0; i < things.size(); ++i)


{



if (things[i]->reflects())




things[i]->render();


}


//render the non-reflecting scene


renderNonReflect(false, false);

}

void Universe::update(float elapsedSeconds)

{


for (unsigned int i = 0; i < things.size(); ++i)


{



things[i]->update(elapsedSeconds);


}


user->update(elapsedSeconds);

}

void Universe::renderNonReflect(bool showAvatar, bool reflected)

{


//**first pass (ambient lighting)**


//turn on ambient lighting


float ambient[] = {0.2, 0.2, 0.2, 1.0};


glLightModelfv(GL_LIGHT_MODEL_AMBIENT, ambient);


light->enable(false);


renderScene(showAvatar);


if(RENDER_SHADOWS)


{



//**render shadow volumes**



//enable the stencil buffer



glEnable(GL_STENCIL_TEST);



if (reflected)



{




glStencilFunc(GL_EQUAL, 0x80, 0x80);



}



else



{




glStencilFunc(GL_ALWAYS, 0, ~0);



}



glStencilMask(0x7f);



//disable writes to the colour and depth buffers



glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);



glDepthMask(GL_FALSE);



//render the backs of the shadow volumes, into the stencil buffer by incrementing the



//count there



if (!reflected) //we are in this state already




glCullFace(GL_FRONT);



else




glCullFace(GL_BACK);



glStencilOp(GL_KEEP, GL_INCR, GL_KEEP);



renderShadowVolumes();



//render the fronts of the shadow volumes, into the stencil buffer by decrementing the



//count there



if (!reflected)




glCullFace(GL_BACK);



else




glCullFace(GL_FRONT);



glStencilOp(GL_KEEP, GL_DECR, GL_KEEP);



renderShadowVolumes();



//**second pass (diffuse lighting)**



//enable writing to the colour buffer



glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);



//draw only if the value in the stencil buffer is 0



if (reflected)




glStencilFunc(GL_EQUAL, 0x80, ~0);



else




glStencilFunc(GL_EQUAL, 0, 0x7f);



glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);


}


//enable depth testing, passes if equal to what is there already


glDepthMask(GL_TRUE);


glDepthFunc(GL_EQUAL);


//blend this pass with the last one


glEnable(GL_BLEND);


glBlendFunc(GL_ONE, GL_ONE);


//turn off ambient lighting


float ambientOff[] = {0, 0, 0, 0};


glLightModelfv(GL_LIGHT_MODEL_AMBIENT, ambientOff);


light->enable(true);


renderScene(showAvatar);


//normal depth testing


glDepthFunc(GL_LEQUAL);


//projected shadow setups


glEnable(GL_STENCIL_TEST);


if (reflected)



glStencilFunc(GL_EQUAL, 0x80, ~0);


else



glStencilFunc(GL_EQUAL, 0, 0x7f);


glStencilMask(0x7f);


glStencilOp(GL_KEEP, GL_INCR, GL_INCR);


renderFakeShadows();


//disable the stencil buffer


glDisable(GL_STENCIL_TEST);


//disable blending


glDisable(GL_BLEND);

}

void Universe::renderFakeShadows()

{


//set up GL bits


glPolygonOffset(-1.0, 1.0);


glEnable(GL_POLYGON_OFFSET_FILL);


glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);


glDisable(GL_LIGHTING);


glDisable(GL_TEXTURE_2D);


glColor4f(0.0, 0.0, 0.0, 0.5);


//render the objects


if (drawFakeShadows)


{



for (unsigned int i = 0; i < things.size(); ++i)



{




things[i]->renderProjectedShadows(light->getPosition());



}


}


//render the user


if (drawFakeShadows || RENDER_SHADOWS)



user->renderProjectedShadows(light->getPosition());


//tear down GL bits


glDisable(GL_POLYGON_OFFSET_FILL);


glEnable(GL_LIGHTING);


glEnable(GL_TEXTURE_2D);

}

void Universe::renderScene(bool showAvatar)

{


light->render();


map->render();


for (unsigned int i = 0; i < things.size(); ++i)


{



if (drawThings)



{




if (!things[i]->reflects())





things[i]->render();



}



//for debugging



if (drawShadowVolumes)



{




glCullFace(GL_FRONT);




GLfloat colour[] = {1.0, 0.0, 1.0, 1.0};




glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, colour);




things[i]->renderShadowVolumes(light->getPosition());




glCullFace(GL_BACK);




GLfloat colour2[] = {1.0, 1.0, 0.0, 1.0};




glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, colour2);




things[i]->renderShadowVolumes(light->getPosition());



}


}


//for debugging


if (drawShadowVolumes)


{



glCullFace(GL_FRONT);



GLfloat colour[] = {1.0, 0.0, 1.0, 1.0};



glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, colour);



user->renderShadowVolumes(light->getPosition());



glCullFace(GL_BACK);



GLfloat colour2[] = {1.0, 1.0, 0.0, 1.0};



glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, colour2);



user->renderShadowVolumes(light->getPosition());


}


if (showAvatar || !linkUser)


{



user->render();


}

}

void Universe::renderShadowVolumes()

{


for (unsigned int i = 0; i < things.size(); ++i)


{



things[i]->renderShadowVolumes(light->getPosition());


}


user->renderShadowVolumes(light->getPosition());

}

void Universe::init()

{


user->init();


addRandomBoxes(20);


Thing *mirror = new Mirror(&Vertex(0, 0, 0), &Vertex(4, 1.5, 4), this);


addThing(mirror);


map = new SimpleMap(-5, 15, -5, 15);


light->init();


light->enable(true);


for (unsigned int i = 0; i < things.size(); ++i)


{



things[i]->init();


}

}

class Mirror :


public Thing

{

public:


//create a rectangular mirror with the given opposite corners in the supplied universe


Mirror(Vertex *point1, Vertex *point2, Universe *uni);


virtual ~Mirror(void);


//rendering methods


void render(void);


void init(void);


virtual void renderShadowVolumes(Vertex *lightPosition) {rend->renderShadowVolumes(lightPosition);}


//returns true so we know to render the mirror in the reflector rendering pass


virtual bool reflects();

private:


//helper method to render the object as a reflector


void renderReflect();


//one corner of the mirror's polygon, the other is stored in positionX etc


//in Thing, both stored for convenience, since they are duplicated in polygon


float x2, y2, z2;


//reference to the scene in which the mirror resides, so we can display a reflection


//of it


Universe *universe;

};
Mirror::Mirror(Vertex *point1, Vertex *point2, Universe *uni)

{


//store the opposite corners of the mirror


positionX = (*point1)(0);


positionY = (*point1)(1);


positionZ = (*point1)(2);


x2 = (*point2)(0);


y2 = (*point2)(1);


z2 = (*point2)(2);


//store a polygon for the mirror


Polygon *polygon = new Polygon();


polygon->addVertex(Vertex(positionX, positionY, positionZ), Vertex(0, 0, 0));


polygon->addVertex(Vertex(x2, positionY, z2), Vertex(0, 1, 0));


polygon->addVertex(Vertex(x2, y2, z2), Vertex(1, 1, 0));


polygon->addVertex(Vertex(positionX, y2, positionZ), Vertex(1, 0, 0));


rend = polygon;


universe = uni;

}

Mirror::~Mirror(void)

{

}

void Mirror::render(void)

{


//delegate if we should render reflectors


if (RENDER_REFLECT)



renderReflect();


else


{



//render the mirror as a blank white polygon



GLfloat colour[] = {1.0, 1.0, 1.0, 1.0};



glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, colour);



glDisable(GL_TEXTURE_2D);



rend->render();



glEnable(GL_TEXTURE_2D);


}

}

void Mirror::renderReflect()

{


//**render polygon to stencil buffer


//disable writes to the colour buffer


glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);


glDepthMask(GL_TRUE);


glEnable(GL_DEPTH_TEST);


glDepthFunc(GL_LEQUAL);


//enable the stencil buffer and draw the polygon of the mirror into the stencil buffer


glEnable(GL_STENCIL_TEST);


glStencilOp(GL_REPLACE, GL_REPLACE, GL_REPLACE);


glStencilMask(0x80);


glStencilFunc(GL_ALWAYS, 0x80, 0x80);


rend->render();


//draw 'holes' in the stencil buffer for any occluders


glStencilOp(GL_KEEP, GL_KEEP, GL_REPLACE);


glStencilFunc(GL_ALWAYS, 0x0, 0x80);


universe->renderScene(false);


//then clear the depth buffer (this is unfortunate)


glClear(GL_DEPTH_BUFFER_BIT);


//**flip world around the mirror


glPushMatrix();


float centreX = positionX + (x2-positionX)/2;


float centreZ = positionZ + (z2-positionZ)/2;


float dX = centreX - positionX;


float dZ = centreZ - positionZ;


float degRot = atan2(dX, -dZ) * 180/M_PI;


//translate to centre


glTranslatef(centreX, 0, centreZ);


//rotate to align with z axis


glRotatef(-degRot, 0, 1, 0);


//flip around z-axis


glScalef(-1, 1, 1);


//clipping plane


double planeEqn[] = {1, 0, 0, 0};


glClipPlane(GL_CLIP_PLANE0, planeEqn);


glEnable(GL_CLIP_PLANE0);


//rotate back


glRotatef(degRot, 0, 1, 0);


//translate back


glTranslatef(-centreX, 0, -centreZ);


//**render world


glCullFace(GL_FRONT);


glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);


glStencilFunc(GL_EQUAL, 0x80, 0x80);


glStencilOp(GL_KEEP, GL_KEEP, GL_KEEP);


glDepthMask(GL_TRUE);


universe->renderNonReflect(true, true);


glDisable(GL_CLIP_PLANE0);


//**render polygon to depth buffer only


glDisable(GL_STENCIL_TEST);


glCullFace(GL_BACK);


glColorMask(GL_FALSE, GL_FALSE, GL_FALSE, GL_FALSE);


rend->render();


//**restore transform and depth test


glPopMatrix();


glColorMask(GL_TRUE, GL_TRUE, GL_TRUE, GL_TRUE);


glDepthFunc(GL_LEQUAL);

}

class Renderable

{

public:


Renderable(void);


virtual ~Renderable(void);


virtual void render(void) = 0;


virtual void renderShadowVolumes(Vertex *lightPosition) {}


virtual void renderProjectedShadows(Vertex *lightPosition, float yPlane);


virtual void rotateY(float rads) = 0;


virtual void update(float elapsedSeconds) {}


virtual void init(void) {}

};

void Renderable::renderProjectedShadows(Vertex *lightPosition, float yPlane)

{


//projection matrix


GLfloat shadowMat[4][4];

    // First row

    shadowMat[0][0] = (*lightPosition)(1) - yPlane;

    shadowMat[0][1] = 0.0f;

    shadowMat[0][2] = 0.0f;

    shadowMat[0][3] = 0.0f;

    // Second row

    shadowMat[1][0] = -(*lightPosition)(0);


shadowMat[1][1] = -yPlane;

    shadowMat[1][2] = -(*lightPosition)(2);

    shadowMat[1][3] = -1.0f;

    // Third row

    shadowMat[2][0] = 0.0f;

    shadowMat[2][1] = 0.0f;

    shadowMat[2][2] = (*lightPosition)(1) - yPlane;

    shadowMat[2][3] = 0.0f;

    // Fourth row

    shadowMat[3][0] = (yPlane * (*lightPosition)(0));

    shadowMat[3][1] = (yPlane * (*lightPosition)(1));

    shadowMat[3][2] = (yPlane * (*lightPosition)(2));

    shadowMat[3][3] = (*lightPosition)(1);


glMultMatrixf((GLfloat *)shadowMat);


render();

}

//a point in space (or a vector)

class Vertex

{

public:


Vertex();


//usual constructor


Vertex(double x, double y, double z);


//copy constructor


Vertex(const Vertex & v)


{



storage[0] = v.storage[0];



storage[1] = v.storage[1];



storage[2] = v.storage[2];


}


//destructor


~Vertex(void)


{


}


//return a reference to part of the vertex 0<=i<3


//x = 0, y = 1, z = 2


double& operator() (int i)


{



assert(i >= 0);



assert(i < 3);



return storage[i];


}


double operator() (int i) const  //const version


{



assert(i >= 0);



assert(i < 3);



return storage[i];


}


//subtract one vertex from another to make a vector (represented as a Vertex)


const Vertex operator - (Vertex & other)


{



return Vertex(storage[0] - other(0), storage[1] - other(1), storage[2] - other(2));


}


//add two vectors to get another (all represented as Vertexs)


const Vertex operator + (Vertex & other)


{



return Vertex(storage[0] + other(0), storage[1] + other(1), storage[2] + other(2));


}


//these methods are more efficent and convenient than matrix multiplication


//for simple transformations


void translate(double x, double y, double z);


void scale(double x, double y, double z);


void rotateY(float rads);


//returns the modulus of this vector |a|


double size(void);


//normalises this vector ie changes a to a / |a|


void normalise(void);

private:


//(0, 1, 2, 3)


double storage[4];

};

//cross product of two vectors

Vertex crossProduct(Vertex &v1, Vertex &v2);

//dot product of two vectors

double dotProduct(Vertex &v1, Vertex &v2);

//translate by (x, y, z)

void Vertex::translate(double x, double y, double z)

{


storage[0] += x;


storage[1] += y;


storage[2] += z;

}

//scale by (x, y, z)

void Vertex::scale(double x, double y, double z)

{


storage[0] *= x;


storage[1] *= y;


storage[2] *= z;

}

//|a| = sqrt(ax2 + ay2 + az2 + aw2), aw = 0

double Vertex::size(void)

{


return sqrt(storage[0]*storage[0] + storage[1]*storage[1] + storage[2]*storage[2]);

}

//produces a unit vector of the same direction as the original vector

void Vertex::normalise(void)

{


storage[0] /= size();


storage[1] /= size();


storage[2] /= size();


storage[3] = 0;

}

//calculates the cross product of two vectors

Vertex crossProduct(Vertex &v1, Vertex &v2)

{


Vertex result(v1(1)*v2(2) - v2(1)*v1(2), v1(2)*v2(0)-v2(2)*v1(0), v1(0)*v2(1) - v2(0)*v1(1));


return result;

}

double dotProduct(Vertex &v1, Vertex &v2)

{


double result = v1(0)*v2(0) + v1(1)*v2(1) + v1(2)*v2(2);


return result;

}

void Vertex::rotateY(float rads)

{


rads *= -1;


double x = storage[0];


double z = storage[2];


storage[0] = x*cos(rads) - z*sin(rads);


storage[2] = x*sin(rads) + z*cos(rads);

}

class Polygon : public Renderable

{

public:


Polygon();


virtual ~Polygon(void);


//add a vertex to the polygon


void addVertex(Vertex &vert, Vertex &tex)


{



vertexList.push_back(new Vertex(vert));



texList.push_back(new Vertex(tex));


}


//sends this polygon to OpenGL


void render();


//renders this polygon's shadow volume


void renderShadowVolumes(Vertex *lightPosition);


//returns a normal vector to this polygon by calculating a cross product


Vertex *getNormal(void);


//returns the number of edges/points of the polygon


unsigned int order(void)


{



return vertexList.size();


}


//calculate a normal vector to a polygon with the given corners


static Vertex calcNormal(Vertex &v0, Vertex &v1, Vertex &v2, Vertex &v3);


//calculate the plane equation for a polygon with the given vertices


static void calculatePlaneEqn(Vertex &v0, Vertex &v1, Vertex &v2, double *result);


//rotate the polygon about the y axis


virtual void rotateY(float rads);


//find the point at the center of the polygon


Vertex getCenter();

private:


//returns a pointer to the ith vertex in the polygon


Vertex *getVertex(int i)


{



return vertexList[i];


}


//this polygon's normal vector


Vertex *normal;


//the edges that make up the polygon


vector<Vertex *> vertexList;


//tex co-ords for the polygon


vector<Vertex *> texList;


friend class ShadowVolume;

};

//renders this polygon using OpenGL

void Polygon::render()

{


glBegin(GL_POLYGON);


//output this polygon


Vertex normal = *getNormal();


glNormal3f(normal(0), normal(1), normal(2));


for (unsigned int i = 0; i < vertexList.size(); ++i)


{



Vertex vert = *getVertex(i);



Vertex tex = *texList[i];



glTexCoord2f(tex(0), tex(1));



glVertex3f(vert(0), vert(1), vert(2));


}


glEnd();

}

Vertex Polygon::calcNormal(Vertex &v0, Vertex &v1, Vertex &v2, Vertex &v3)

{


//two vectors in the polygon


Vertex vA = v0 - v2;


Vertex vB = v1 - v3;


Vertex result = crossProduct(vA, vB);


//normalise the cross product


result.normalise();


return result;

}

void Polygon::calculatePlaneEqn(Vertex &v0, Vertex &v1, Vertex &v2, double *result)

{


Vertex normal = calcNormal(v2, v1, v0, v0);


result[3] = dotProduct(normal, v0);


result[0] = normal(0);


result[1] = normal(1);


result[2] = normal(2);


delete &normal;

}

//calculate the normal vector of this polygon by calculating the cross product of two

//vectors within it

Vertex *Polygon::getNormal(void)

{


if (normal == NULL)


{



if (vertexList.size() <= 2)




normal = new Vertex(0, 0, 0);



else




normal = new Vertex(calcNormal(*(getVertex(0)), *(getVertex(1)), *(getVertex(2)), *(getVertex(3))));


}


return normal;

}

Vertex Polygon::getCenter()

{


Vertex result;


//sum all the vertices


for (unsigned int i = 0; i < vertexList.size(); ++i)


{



Vertex curVert = *getVertex(i);



result = result + curVert;


}


//find the average of the vertices


result(0) = result(0) / vertexList.size();


result(1) = result(1) / vertexList.size();


result(2) = result(2) / vertexList.size();


return result;

}

void Polygon::renderShadowVolumes(Vertex *lightPosition)

{


ShadowVolume::renderShadowVolumesDirect(this, lightPosition);

}

void Polygon::rotateY(float rads)

{


//rotate all the vertices of the polygon


for (unsigned int i = 0; i < vertexList.size(); ++i)


{



vertexList[i]->rotateY(rads);


}

}
class User : public Thing, public Controller

{

public:


User(Universe *u);


virtual ~User(void);


//rendering funcs from Thing


void render(void);


void update(float elapsedSeconds);


void renderShadowVolumes(Vertex *lightPosition);


void renderProjectedShadows(Vertex *lightPosition);


void init(void);


//Controller funcs


void onKeyPress(unsigned char c, int x, int y);


void onMouseMove(int x, int y);


void onMouseButton(int button, int state, int x, int y);


//return the camera that is the user's view of the scene


Camera *getCamera() { return camera; }


//set the users position in the scene


virtual void setX(float x);


virtual void setY(float y);


virtual void setZ(float z);

private:


//the camera that is the user's view of the scene


Camera *camera;


//the universe of which this user is a part


Universe *owner;


//this variable for mouse movement


int yMouse;


//the direction the user is facing


float radiansDir;


float degreesDir;


//handle the different states of the user (which map to different animation cycles)


void enterWalkingState(void);


enum State {walking, resting};


State state;

};

User::User(Universe *u) : yMouse(0)

{


camera = new Camera();


owner = u;


state = resting;

}

User::~User(void)

{


delete camera;


delete rend;

}

void User::render(void)

{


//we need to transform the avatar so it is located and aligned correctly


glPushMatrix();


glTranslatef(positionX, 0, positionZ);


glRotatef(180-degreesDir, 0.0, 1.0, 0.0);


rend->render();


glPopMatrix();

}

void User::update(float elapsedSeconds)

{


//update avatar and states


if (state == walking)



rend->update(elapsedSeconds);


state = resting;

}

void User::enterWalkingState(void)

{


state = walking;

}

void User::renderShadowVolumes(Vertex *lightPosition)

{


//we need to take into account possible rotation and


//translation of the avatar


glPushMatrix();


glTranslatef(positionX, 0, positionZ);


glRotatef(-degreesDir, 0.0, 1.0, 0.0);


//adjust the light so it is in the right place


Vertex translatedLightPos = Vertex(*lightPosition);


translatedLightPos.translate(-positionX, 0, -positionZ);


translatedLightPos.rotateY(radiansDir);


//rend->renderShadowVolumes(&translatedLightPos);


glPopMatrix();

}

void User::renderProjectedShadows(Vertex *lightPosition)

{


//render the Renderable's shadow in the correct place


glPushMatrix();


glTranslatef(positionX, 0, positionZ);


glRotatef(180-degreesDir, 0.0, 1.0, 0.0);


//adjust the light so it is in the right place


Vertex translatedLightPos = Vertex(*lightPosition);


translatedLightPos.translate(-positionX, -positionY, -positionZ);


translatedLightPos.rotateY(M_PI+radiansDir);


rend->renderProjectedShadows(&translatedLightPos, 0);


glPopMatrix();

}

void User::init(void)

{


//rend = Box2::getInstance();


rend = new Cal3DAvatar();


camera->init();


rend->init();


positionZ = -2;


positionX = 10;


positionY = 1;


//use the velocity as a direction vector


velocityY = 0;


radiansDir = 4.7;


degreesDir = radiansDir * 180 / M_PI;


velocityX = -sin(-radiansDir);


velocityZ = -cos(-radiansDir);


camera->setPosition(positionX, 1, positionZ);


camera->rotate(degreesDir);

}

void User::onKeyPress(unsigned char c, int x, int y)

{

//walking speed

#define MULTIPLIER (0.085)


//adjust the state and position of the avatar


//this is a bit of a hack; we should just set the velocity and state


//and use update(time) to change the position according to the velocity


if (c == 'w')


{



if (linkUser)



{




positionZ += velocityZ * MULTIPLIER;




positionX += velocityX * MULTIPLIER;



}



enterWalkingState();



camera->translate(velocityX * MULTIPLIER, 0, velocityZ * MULTIPLIER);



owner->collide(this);


}


else if (c == 's')


{



if (linkUser)



{




positionZ -= velocityZ * MULTIPLIER;




positionX -= velocityX * MULTIPLIER;



}



enterWalkingState();



camera->translate(-velocityX * MULTIPLIER, 0, -velocityZ * MULTIPLIER);



owner->collide(this);


}


else if (c == 'a')


{



if (linkUser)



{




positionZ -= velocityX * MULTIPLIER;




positionX += velocityZ * MULTIPLIER;



}



camera->translate(velocityZ * MULTIPLIER, 0, -velocityX * MULTIPLIER);



owner->collide(this);


}


else if (c == 'd')


{



if (linkUser)



{




positionZ += velocityX * MULTIPLIER;




positionX -= velocityZ * MULTIPLIER;



}



camera->translate(-velocityZ * MULTIPLIER, 0, velocityX * MULTIPLIER);



owner->collide(this);


}


else if (c == 'r')


{



if (!linkUser)



{




camera->translate(0, 1, 0);



}


}


else if (c == 'f')


{



if (!linkUser)



{




camera->translate(0, -1, 0);



}


}

}

void User::onMouseMove(int x, int y)

{


int dx = x - yMouse;


radiansDir += dx / 50.0;


degreesDir = radiansDir * 180 / M_PI;


velocityX = -sin(-radiansDir);


velocityZ = -cos(-radiansDir);


camera->rotate(degreesDir);


yMouse = x;

}

void User::onMouseButton(int button, int state, int x, int y)

{


//when the user presses a button, record the start position


if (state == GLUT_DOWN)


{



yMouse = x;


}


//when the user releases a mouse button rotate the object


if (state == GLUT_UP)


{



onMouseMove(x, y);


}

}

void User::setX(float x)

{


camera->translate(x - positionX, 0, 0);


positionX = x;

}

void User::setY(float y)

{


camera->translate(0, y - positionY, 0);


positionY = y;

}

void User::setZ(float z)

{


camera->translate(0, 0, z - positionZ);


positionZ = z;

}

class Texture

{

public:


//creates a new Texture from the given .tex file


Texture(char *fileName);


virtual ~Texture(void);


//sets up opengl to draw a polygon with this texture


void render(void);


//count references to this object (used by TextureManager)


//note that we are not counting the strict number of refs to this object


//but the number of objects in the scene using this texture


int getRefCount(void) { return refs; }


void incRefCount(void) { ++refs; }


void decRefCount(void) { --refs; }


//the filename from which the texture was loaded


char *getFileName(void) { return fName; }


void loadToGL(void);

private:


unsigned int width, height;


unsigned char *image;


GlContextData<unsigned int> textureId;


//filename


char *fName;


//loads a texture from disk


void loadImage(char *fileName);


//loads this texture into texture memory


void loadTexture(void);


//reference count


int refs;

};

Texture::Texture(char *fileName)

{


//load the image from file


loadImage(fileName);


//save a copy of the filename


fName = (char *) malloc(strlen(fileName)+1);


strcpy(fName, fileName);

}

void Texture::loadToGL(void)

{


if (image != 0)


{



//get the next texture id from opengl



glGenTextures(1, &(*textureId));



//load the image to opengl texture mem



loadTexture();


}

}

Texture::~Texture(void)

{


delete [] image;


free(fName);

}

void Texture::loadImage(char *fileName)

{


//cout << fileName << '\n';


//loader for my own simple image file


//short header of 8 bytes followed by the image in such a format that it can


//be sent direct to opengl


//I use a small java app to convert images to this format


//file format


//------------


//byte
use


//------------


//0

a magic number to id the family of file types, should = 26


//1

specific file type within family, should = 1


//2

version number of file type, should = 1


//3

padding


//4, 5
width


//6, 7
height


//8+
the image, interlaced


typedef unsigned char byte;


ifstream in(fileName, ifstream::binary);


in.unsetf(std::ios_base::skipws);


if (!in.is_open())


{



cout << "Error: could not open file" << '\n';



width = height = 0;



image = 0;



in.close();



return;


}


byte magicNo, fileType, versionNo, trans;


byte widthMSB, widthLSB, heightMSB, heightLSB;


in >> magicNo;


in >> fileType;


in >> versionNo;


if (magicNo != 26 || fileType != 1 || versionNo != 1)


{



cout << "Error: bad file type " << '\n';



cout << magicNo << ' ' << fileType << ' ' << versionNo << '\n';



width = height = 0;



image = 0;



in.close();



return;


}


in >> trans;


in >> widthMSB;


in >> widthLSB;


in >> heightMSB;


in >> heightLSB;


width = (widthMSB << 8) + widthLSB;


height = (heightMSB << 8) + heightLSB;


image = new byte[width * height * 3];


byte temp;


for (unsigned int i = 0; i < width*height*3; ++i)


{



in >> temp;



image[i] = temp;


}


in.close();

}

void Texture::loadTexture(void)

{


//identify the texture


glBindTexture(GL_TEXTURE_2D, *textureId);


//loading parameters


glPixelStorei(GL_UNPACK_ALIGNMENT, 1);


glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_REPEAT);


glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_REPEAT);


glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);


glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR);


//how the texture interacts with its environment


glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_MODULATE);


//load the texture


glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, width, height, 0, GL_RGB, GL_UNSIGNED_BYTE, image);

}

void Texture::render(void)

{


//set the colour to white and bind this texture for use


GLfloat colour[] = {1.0, 1.0, 1.0, 1.0};


glMaterialfv(GL_FRONT_AND_BACK, GL_AMBIENT_AND_DIFFUSE, colour);


GLfloat black[] = {0.0, 0.0, 0.0, 1.0};


glMaterialfv(GL_FRONT, GL_SPECULAR, black);


//cout << textureId << '\n';


//cout.flush();


glBindTexture(GL_TEXTURE_2D, *textureId);

}

class TextureManager

{

public:


~TextureManager(void);


//get a texture of the given image file, if a Texture object exists already then it


//is returned, otherwise a new Texture object is created and returned.


Texture *getTexture(char *fileName);


//call when we are done using a texture object


void releaseTexture(Texture *tex);


static TextureManager *getInstance(void)


{



static TextureManager instance;



return &instance;


}


void loadTexturesToGL(void);

private:


TextureManager(void);


TextureManager(const TextureManager&);

    TextureManager& operator= (const TextureManager&);


//store a map of filenames to texture objects


map<char *, Texture *> textures;

};

Texture *TextureManager::getTexture(char *fileName)

{


//try and pull the texture from the map


Texture *result = textures[fileName];


if (result == NULL)


{



//create a new texture if it can't be found



result = new Texture(fileName);



textures[fileName] = result;


}


result->incRefCount();


return result;

}

void TextureManager::releaseTexture(Texture *tex)

{


tex->decRefCount();


if (tex->getRefCount() == 0)


{



//delete the texture if no one is using it



textures[tex->getFileName()] = NULL;



delete tex;


}

}

void TextureManager::loadTexturesToGL(void)

{


map<char *, Texture *>::iterator start = textures.begin();


map<char *, Texture *>::iterator stop = textures.end();


for (; start != stop; ++start)


{



start->second->loadToGL();


}

}
Appendix D: Project plan

Nicholas Cameron

Project Title: Beyond Photo Realistic Rendering

Supervisor: Anthony Steed

The traditional approach to rendering computer graphics images has been to aim towards photo realism, ie to make an image look as real as a photo does. When rendering images in a virtual reality environment this is not entirely appropriate as we are rendering from the point of view of the user (ie through the eye), not from the point of view of a camera.

In the project I will be investigating ways in which we can make the user in a virtual reality simulation more convinced of their presence in the environment by adopting several computer graphics techniques. Some of these techniques will be fairly standard rendering tricks that we will adapt for this type of simulation and others will be more novel.

The effects I implement may include:

· Shadows, specifically the user seeing their own shadow in the simulation.

· Reflections, specifically the user being able to see their own reflection (ie the reflection of their avatar as it moves around the simulation).

· Using data from the body scanner to create a realistic avatar for the user.

· The user leaving footprints in the world.

· The user being able to see their own breath in the simulation when appropriate.

· The user can ‘fog up’ glass or mirrors.

· The user blocking rain drops falling in the simulation.

· The user can cause turbulence in mist or fog

I would not envisage being able to implement all the above effects and others may present themselves as the project progresses. One of the challenges of the project will be to get these effects working together as opposed to in isolation. For example it is relatively easy to produce both shadows and reflections using the stencil buffer, however how to get these effects to interact realistically is not clear.

By the end of the project I hope to have the following deliverables:

· A software simulation that runs in the cave and implements several of the above effects.

· Experimental data on whether the addition of these effect aids the feeling of presence in the user.

· A paper detailing the production of the software, the experiments performed and an analysis of the results suitable for publication.

Work Plan

October 15th
Have a simulation without effects that a user can walk around and bump into walls etc. Including texture mapping and objects within the environment.

November 5th
Add shadows and reflections to the simulation (but not at the same time), this would include a basic avatar for the user that appears only in the reflections

November 15th
Implement the correct interaction of shadows and reflections.

November 30th
Add avatars using the Cal3D library, this paves the way for adding very complex avatars to the simulation.

January 30th
Decide on and add further effects to the simulation. Work with other members of the VIVE group to add a complex avatar to the simulation.

Plan experiments

End of Term 2

Execute experiments and analyse the results. Write up the project.

Easter Holidays

Slippage time.

Work so far

I am currently on schedule and have a working simulation with reflections and shadows interacting correctly. I have started the integration of the Cal3D library and hope to have that finished in the next few days (ie on time or at most a few days late).

This is a screen shot of the simulation without effects.
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And this screen shot shows shadows, reflections, the simple avatar in the mirror and the interactions of shadows and reflections.
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[Please forgive the scrawl, it is very hard to tell what is going on in greyscale, it is much clearer with colour!]

Appendix E: Interim Report

Nicholas Cameron

Project Title: Beyond Photo Realistic Rendering

Supervisor: Anthony Steed

Work done so far:

· Made a good start on the software system

· Implemented a first person perspective simulation.

· Implemented Texture mapping

· Implemented Shadows

· Implemented Reflections

· Implemented Reflections of shadows

· Integrated the Cal3d library to support complex avatars

· Refactored the software into a moderately well engineered system.

· Reading papers for the report

· Some of the report

Work to do

· Shadows of complex avatars

· Port the system to VR Juggler and the CAVE

· Write the report

The Cal3d avatar library has been a real nightmare, especially generating shadows for it, this has destroyed the previous schedule and meant I have not been able to implement many of the effects we would have liked. I also broke my right hand which has slowed me down severely.

Screen shots:

1: scene with no effects,

2: scene with texture mapping,

3: textures and shadows,

4: textures and reflections, note simple avatar,

5: textures, reflections and shadows, note reflections of shadows and self-shadow,

6: complex avatar in third person perspective with reflection but no shadow.
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